Emberly Eldon
Physics Department, Simon Fraser University, Burnaby, British Columbia, Canada.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 1):041903. doi: 10.1103/PhysRevE.77.041903. Epub 2008 Apr 8.
In multicellular organisms, the initial patterns of gene expression are regulated by spatial gradients of biochemical factors, known as morphogen gradients. Because of biochemical noise in the morphogen gradients there are associated spatial errors in the positions of target gene patterns. Using a simple single morphogen and/or single target gene model, we use propagation of error analysis to derive a condition on the amount of morphogen that needs to be produced in order to have precise spatial patterning of the target. We find that there is an optimal morphogen gradient profile that requires the least amount of morphogen to be produced. Experimental results for the Bicoid-Hunchback system in early Drosophila development are consistent with the predictions of this analysis. We also discuss our results in the context of recent work that analyzed this system using mutual information as an organizing principle, and show that minimizing the amount of morphogen produced also leads to a near optimal flow of information between input and target.
在多细胞生物中,基因表达的初始模式由生化因子的空间梯度调节,这些生化因子被称为形态发生素梯度。由于形态发生素梯度中的生化噪声,靶基因模式的位置存在相关的空间误差。使用一个简单的单形态发生素和/或单靶基因模型,我们利用误差传播分析来推导一个关于为实现靶标的精确空间模式形成而需要产生的形态发生素量的条件。我们发现存在一种最优的形态发生素梯度分布,其需要产生的形态发生素量最少。果蝇早期发育中Bicoid-Hunchback系统的实验结果与该分析的预测一致。我们还在最近以互信息作为组织原则分析该系统的工作背景下讨论了我们的结果,并表明使产生的形态发生素量最小化也会导致输入和靶标之间接近最优的信息流。