Wu Haifeng, Hu Xinhang, Zeng Yu
School of Electrical and Information Engineering, Yunnan Minzu University, Kunming, 650500, China; Yunnan Provincial Key Laboratory of Unmanned Autonomous Systems, Kunming, 650500, China; Yunnan Provincial Colleges and Universities Intelligent Sensor Network and Information System Technology Innovation Team, Kunming 650504, China.
School of Electrical and Information Engineering, Yunnan Minzu University, Kunming, 650500, China.
Neuroimage. 2024 Dec 15;304:120954. doi: 10.1016/j.neuroimage.2024.120954. Epub 2024 Nov 30.
Dynamic Causal Modeling (DCM) is a crucial tool for studying brain effective connectivity, offering valuable insights into brain network dynamics through functional magnetic resonance imaging (fMRI) and electrophysiology (EEG and MEG). However, its high computational complexity limits its applicability in large-scale network analysis. To address this issue, we propose a regression algorithm that integrates the Generalized Linear Model (GLM) with Sparse DCM, termed GSD. This algorithm enhances computational performance through three key optimizations: (1) utilizing the symmetry of the Fourier transform to convert complex frequency domain calculations into real number operations, thereby reducing computational complexity; (2) applying GLM and filtering techniques to minimize the effects of noise and confounds, enhancing parameter estimation accuracy; and (3) defining a new cost function to optimize variational inference and filter parameters, further improving parameter estimation accuracy. We validated the GSD algorithm using three public fMRI datasets: simulated Smith small-world network data, attention and motion measured data, and face recognition repetition effect measured data. The experimental results demonstrate that the GSD algorithm reduces computation time by over 50 % while maintaining parameter estimation performance comparable to traditional methods. These findings offer a new perspective on balancing model interpretability and computational efficiency, potentially broadening the application of DCM across various fields.
动态因果模型(DCM)是研究大脑有效连接性的关键工具,通过功能磁共振成像(fMRI)和电生理学(脑电图和脑磁图)为大脑网络动力学提供有价值的见解。然而,其高计算复杂性限制了它在大规模网络分析中的适用性。为了解决这个问题,我们提出了一种将广义线性模型(GLM)与稀疏DCM相结合的回归算法,称为GSD。该算法通过三个关键优化提高计算性能:(1)利用傅里叶变换的对称性将复杂的频域计算转换为实数运算,从而降低计算复杂性;(2)应用GLM和滤波技术来最小化噪声和混杂因素的影响,提高参数估计精度;(3)定义一个新的成本函数来优化变分推理和滤波参数,进一步提高参数估计精度。我们使用三个公开的fMRI数据集验证了GSD算法:模拟的史密斯小世界网络数据、注意力和运动测量数据以及人脸识别重复效应测量数据。实验结果表明,GSD算法在保持与传统方法相当的参数估计性能的同时,将计算时间减少了50%以上。这些发现为平衡模型可解释性和计算效率提供了新的视角,可能会拓宽DCM在各个领域的应用。