Okunomiya Taro, Watanabe Dai, Banno Haruhiko, Kondo Takayuki, Imamura Keiko, Takahashi Ryosuke, Inoue Haruhisa
Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto 606-8507, Japan.
Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
J Neurosci. 2025 Jan 22;45(4):e0457242024. doi: 10.1523/JNEUROSCI.0457-24.2024.
The mammalian striatum is divided into two types of anatomical structures: the island-like, μ-opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated. The aim of this study was to explore the roles of striosome in locomotion and dopamine dynamics in freely moving mice. We targeted striosomal MOR-expressing neurons with male MOR-CreER mice, which express tamoxifen-inducible Cre recombinase under MOR promoter, and Cre-dependent adeno-associated virus vector. The targeted neuronal population consisted mainly of dSPNs. We found that the Gq-coupled designer receptor exclusively activated by designer drugs (DREADD)-based chemogenetic stimulation of striatal MOR-expressing neurons caused a decrease in the number of contralateral rotations and total distance traveled. Wireless fiber photometry with a genetically encoded dopamine sensor revealed that chemogenetic stimulation of striatal MOR-expressing neurons suppressed dopamine signals in the dorsal striatum of freely moving mice. Furthermore, the decrease in mean dopamine signal and the reduction of transients were associated with ipsilateral rotational shift and decrease of average speed, respectively. Thus, a subset of striosomal dSPNs inhibits contralateral rotation, locomotion, and dopamine release in contrast to the role of pan-dSPNs. Our results suggest that striatal MOR-expressing neurons have distinct roles in motor control and dopamine regulation.
岛状、富含μ-阿片受体(MOR)的纹状体小体区室和周围的基质区室。这两个区室都有两种类型的棘状投射神经元(SPN),即表达多巴胺受体D1(D1R)的直接通路SPN(dSPN)和表达多巴胺受体D2(D2R)的间接通路SPN。这些分区结构在运动障碍的发展中具有不同的作用,尽管纹状体小体区室对运动控制和多巴胺调节的功能意义仍有待阐明。本研究的目的是探讨纹状体小体在自由活动小鼠的运动和多巴胺动态中的作用。我们使用雄性MOR-CreER小鼠靶向纹状体中表达MOR的神经元,该小鼠在MOR启动子下表达他莫昔芬诱导型Cre重组酶,以及Cre依赖性腺相关病毒载体。靶向的神经元群体主要由dSPN组成。我们发现,基于设计药物特异性激活的Gq偶联设计受体(DREADD)对纹状体中表达MOR的神经元进行化学遗传刺激会导致对侧旋转次数和总移动距离减少。使用基因编码多巴胺传感器的无线光纤光度法显示,对纹状体中表达MOR的神经元进行化学遗传刺激会抑制自由活动小鼠背侧纹状体中的多巴胺信号。此外,平均多巴胺信号的降低和瞬态的减少分别与同侧旋转偏移和平均速度的降低相关。因此,与泛dSPN的作用相反,纹状体小体dSPN的一个子集抑制对侧旋转、运动和多巴胺释放。我们的结果表明,纹状体中表达MOR的神经元在运动控制和多巴胺调节中具有不同的作用。