Ruiz-Caldas Maria-Ximena, Apostolopoulou-Kalkavoura Varvara, Pacoste Laura, Jaworski Aleksander, Mathew Aji P
Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Stockholm, Sweden.
Stockholm University Centre for Circular and Sustainable systems, Stockholm University, SE-10691, Stockholm, Sweden.
ChemSusChem. 2025 May 5;18(9):e202402103. doi: 10.1002/cssc.202402103. Epub 2024 Dec 11.
Extracting high-performance nanomaterials from waste presents a promising avenue for valorization. This study presents two methods for extracting cellulose nanofibrils (CNFs) from discarded textiles. Post-consumer cotton fabrics are chemically treated through either cationization with (2,3-epoxypropyl)trimethylammonium chloride or TEMPO/NaBr-catalyzed oxidation, followed by fibrillation to produce Cat-CNFs and TO-CNFs, respectively. Molecular models indicate variations in the effective volume of each grafted group, influencing the true densities of the functionalized fibers. Significant differences in the morphology of the CNFs arise from each functionalization route. Both CNF types exhibit high surface charge (>0.9 mmol g), small cross-sections (<10 nm), and high aspect ratios (>35). TO-CNFs have a higher surface charge, whereas Cat-CNFs exhibit a higher aspect ratio and greater colloidal stability across a broader pH range. Cat-CNFs exhibit cross-sections at the elementary fibril level, highlighting the steric impact of the grafted surface groups on fibrillation efficiency. Nanopapers from these CNFs demonstrate high optical transmittance and haze, whereas anisotropic foams show mechanical properties comparable to foams made from wood-based CNFs. This work highlights the potential of post-consumer cotton textiles as a CNF source and the impact of chemical treatment on the properties of the fibers, CNFs, and resulting lightweight materials.
从废弃物中提取高性能纳米材料为资源回收利用提供了一条前景广阔的途径。本研究提出了两种从废弃纺织品中提取纤维素纳米纤维(CNF)的方法。消费后的棉织物通过用(2,3-环氧丙基)三甲基氯化铵进行阳离子化处理或TEMPO/NaBr催化氧化进行化学处理,随后进行原纤化,分别生产阳离子化纤维素纳米纤维(Cat-CNF)和氧化纤维素纳米纤维(TO-CNF)。分子模型表明每个接枝基团的有效体积存在差异,这会影响功能化纤维的真实密度。每种功能化途径都会使CNF的形态产生显著差异。两种类型的CNF均具有高表面电荷(>0.9 mmol g)、小横截面(<10 nm)和高长径比(>35)。TO-CNF具有更高的表面电荷,而Cat-CNF在更宽的pH范围内表现出更高的长径比和更好的胶体稳定性。Cat-CNF在原纤水平上呈现出横截面,突出了接枝表面基团对原纤化效率的空间影响。由这些CNF制成的纳米纸具有高透光率和雾度,而异质泡沫的机械性能与由木质CNF制成的泡沫相当。这项工作突出了消费后的棉纺织品作为CNF来源的潜力以及化学处理对纤维、CNF和所得轻质材料性能的影响。