Suppr超能文献

人二羧酸转运体NaDC3中的底物转运与抑制

Substrate translocation and inhibition in human dicarboxylate transporter NaDC3.

作者信息

Li Yan, Song Jinmei, Mikusevic Vedrana, Marden Jennifer J, Becerril Alissa, Kuang Huihui, Wang Bing, Rice William J, Mindell Joseph A, Wang Da-Neng

机构信息

Department of Cell Biology, New York University School of Medicine, New York, NY, USA.

Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

出版信息

Nat Struct Mol Biol. 2025 Mar;32(3):502-512. doi: 10.1038/s41594-024-01433-0. Epub 2024 Dec 2.

Abstract

The human high-affinity sodium-dicarboxylate cotransporter (NaDC3) imports various substrates into the cell as tricarboxylate acid cycle intermediates, lipid biosynthesis precursors and signaling molecules. Understanding the cellular signaling process and developing inhibitors require knowledge of the structural basis of the dicarboxylate specificity and inhibition mechanism of NaDC3. To this end, we determined the cryo-electron microscopy structures of NaDC3 in various dimers, revealing the protomer in three conformations: outward-open C, outward-occluded C and inward-open C. A dicarboxylate is first bound and recognized in C and how the substrate interacts with NaDC3 in C likely helps to further determine the substrate specificity. A phenylalanine from the scaffold domain interacts with the bound dicarboxylate in the C state and modulates the kinetic barrier to the transport domain movement. Structural comparison of an inhibitor-bound structure of NaDC3 to that of the sodium-dependent citrate transporter suggests ways for making an inhibitor that is specific for NaDC3.

摘要

人类高亲和力二羧酸钠协同转运蛋白(NaDC3)将各种底物作为三羧酸循环中间体、脂质生物合成前体和信号分子转运到细胞中。了解细胞信号传导过程并开发抑制剂需要掌握NaDC3二羧酸盐特异性的结构基础和抑制机制。为此,我们确定了处于各种二聚体状态的NaDC3的冷冻电子显微镜结构,揭示了原体的三种构象:向外开放的C构象、向外堵塞的C构象和向内开放的C构象。二羧酸盐首先在C构象中结合并被识别,底物在C构象中与NaDC3的相互作用方式可能有助于进一步确定底物特异性。来自支架结构域的苯丙氨酸在C状态下与结合的二羧酸盐相互作用,并调节转运结构域运动的动力学屏障。将NaDC3的抑制剂结合结构与钠依赖性柠檬酸转运蛋白的结构进行比较,为制备对NaDC3具有特异性的抑制剂提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验