Neselu Kasahun, Wang Bing, Rice William J, Potter Clinton S, Carragher Bridget, Chua Eugene Y D
Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
Cryo-Electron Microscopy Core, New York University Grossman School of Medicine, New York, NY, USA.
J Struct Biol X. 2023 Jan 24;7:100085. doi: 10.1016/j.yjsbx.2023.100085. eCollection 2023.
Ice thickness is a critical parameter in single particle cryo-EM - too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50-150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.
冰厚度是单颗粒冷冻电镜中的一个关键参数——太薄的冰在成像过程中可能会破裂或排除感兴趣的样品,而太厚的冰会导致更多的非弹性散射,从而无法获得高分辨率的重建结果。在此,我们展示了冰厚度对分辨率的实际影响,以及能量过滤器、加速电压或探测器模式的影响。我们在三台具有不同仪器配置和设置的显微镜上,收集了一系列不同冰厚度下的脱铁铁蛋白数据。我们表明,在300 kV显微镜上,使用20 eV能量过滤器狭缝对改善较厚冰层中的分辨率有更大作用;在150 nm以上的冰厚度下,以300 kV而非200 kV的加速电压运行可显著提高分辨率;在200 kV显微镜上,使用工作在超分辨率模式的探测器,对于厚度达200 nm的冰能够实现良好的重建,而采用计数模式而非线性模式进行采集可提高50 - 150 nm厚度冰层的分辨率。我们的研究结果可为寻求优化单颗粒和原位冷冻电镜数据采集或样品制备流程的用户提供指导。我们注意到,大多数原位数据采集是在冰厚度超过150 nm的样品上进行的,因此这些结果可能对该领域尤为重要。