Sakenova Nazgul, Cacace Elisabetta, Orakov Askarbek, Huber Florian, Varik Vallo, Kritikos George, Michiels Jan, Bork Peer, Cossart Pascale, Goemans Camille V, Typas Athanasios
Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Center for Microbiology, VIB-KU Leuven, Leuven, Belgium.
Nat Microbiol. 2025 Jan;10(1):202-216. doi: 10.1038/s41564-024-01857-w. Epub 2024 Dec 2.
By acquiring or evolving resistance to one antibiotic, bacteria can become cross-resistant to a second antibiotic, which further limits therapeutic choices. In the opposite scenario, initial resistance leads to collateral sensitivity to a second antibiotic, which can inform cycling or combinatorial treatments. Despite their clinical relevance, our knowledge of both interactions is limited. We used published chemical genetics data of the Escherichia coli single-gene deletion library in 40 antibiotics and devised a metric that discriminates between known cross-resistance and collateral-sensitivity antibiotic interactions. Thereby we inferred 404 cases of cross-resistance and 267 of collateral-sensitivity, expanding the number of known interactions by over threefold. We further validated 64/70 inferred interactions using experimental evolution. By identifying mutants driving these interactions in chemical genetics, we demonstrated that a drug pair can exhibit both interactions depending on the resistance mechanism. Finally, we applied collateral-sensitive drug pairs in combination to reduce antibiotic-resistance development in vitro.
通过获得或进化出对一种抗生素的耐药性,细菌可能会对第二种抗生素产生交叉耐药性,这进一步限制了治疗选择。在相反的情况下,初始耐药性会导致对第二种抗生素的协同敏感性,这可为循环或联合治疗提供依据。尽管它们具有临床相关性,但我们对这两种相互作用的了解都很有限。我们使用了已发表的大肠杆菌单基因缺失文库在40种抗生素中的化学遗传学数据,并设计了一种指标来区分已知的交叉耐药性和协同敏感性抗生素相互作用。由此我们推断出404例交叉耐药性和267例协同敏感性病例,使已知相互作用的数量增加了三倍多。我们使用实验进化进一步验证了70个推断出的相互作用中的64个。通过在化学遗传学中鉴定驱动这些相互作用的突变体,我们证明了一对药物根据耐药机制可以表现出这两种相互作用。最后,我们联合应用协同敏感的药物对来减少体外抗生素耐药性的产生。