Hong Soyeon, Nguyen Bao Ngoc, Min Huitae, Youn Hye-Young, Choi Sowoon, Hitayezu Emmanuel, Cha Kwang-Hyun, Park Young Tae, Lee Choong-Gu, Yoo GyHye, Kim Myungsuk
Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-Do, 25451, Republic of Korea.
College of Dentistry, Gangneung Wonju National University, Gangneung, Gangwon-Do, Republic of Korea.
Microbiome. 2024 Dec 2;12(1):251. doi: 10.1186/s40168-024-01971-1.
Osteosarcopenia, characterized by the simultaneous loss of bone and muscle mass, is a serious health problem in the aging population. This study investigated the interplay between host genetics, gut microbiota, and musculoskeletal health in a mouse model of osteosarcopenia, exploring the therapeutic potential of gut microbiota modulation.
We examined the effects of Rg3, a phytochemical, on osteosarcopenia and its interactions with host genetics and gut microbiota in six founder strains of the Collaborative Cross (CC) population. Subsequently, we evaluated the therapeutic potential of Eubacterium nodatum (EN) and Eubacterium ventriosum (EV), two gut microbes identified as significant correlates of Rg3-mediated osteosarcopenia improvement, in selected C57BL/6 J (B6) and 129S1/SvImJ (129S1) mouse strains.
Rg3 treatment altered gut microbiota composition aligned with osteosarcopenia phenotypes, which response varied depending on host genetics. This finding enabled the identification of two microbes in the Eubacterium genus, potential mediator of Rg3 effect on osteosarcopenia. Oral administration of EN and EV differentially impacted bone density, muscle mass, exercise performance, and related gene expression in a mouse strain-specific manner. In 129S1 mice, EN and EV significantly improved these parameters, effectively reversing osteosarcopenic phenotypes. Mechanistic investigations revealed that these effects were mediated through the modulation of osteoblast differentiation and protein degradation pathways. In contrast, EN and EV did not significantly improve osteosarcopenic phenotypes in B6 mice, although they did modulate mitochondrial biogenesis and microbial diversity.
Our findings underscore the complex interplay between host genetics and the gut microbiota in osteosarcopenia and emphasize the need for personalized treatment strategies. EN and EV exhibit strain-specific therapeutic effects, suggesting that tailoring microbial interventions to individual genetic backgrounds may be crucial for optimizing treatment outcomes. Video Abstract.
骨少肌症以骨量和肌肉量同时流失为特征,是老年人群中一个严重的健康问题。本研究在骨少肌症小鼠模型中研究了宿主遗传学、肠道微生物群和肌肉骨骼健康之间的相互作用,探讨了调节肠道微生物群的治疗潜力。
我们研究了植物化学物质Rg3对骨少肌症的影响及其与协作杂交(CC)群体的六个奠基者品系中宿主遗传学和肠道微生物群的相互作用。随后,我们评估了在选定的C57BL/6 J(B6)和129S1/SvImJ(129S1)小鼠品系中,两种被确定为与Rg3介导的骨少肌症改善显著相关的肠道微生物——结节真杆菌(EN)和膨胀真杆菌(EV)的治疗潜力。
Rg3治疗改变了与骨少肌症表型一致的肠道微生物群组成,其反应因宿主遗传学而异。这一发现使得能够在真杆菌属中鉴定出两种微生物,它们是Rg3对骨少肌症影响的潜在介质。口服EN和EV以小鼠品系特异性方式对骨密度、肌肉量、运动能力和相关基因表达产生不同影响。在129S1小鼠中,EN和EV显著改善了这些参数,有效逆转了骨少肌症表型。机制研究表明,这些作用是通过调节成骨细胞分化和蛋白质降解途径介导的。相比之下,EN和EV在B6小鼠中虽调节了线粒体生物发生和微生物多样性,但并未显著改善骨少肌症表型。
我们的研究结果强调了宿主遗传学和肠道微生物群在骨少肌症中的复杂相互作用,并强调了个性化治疗策略的必要性。EN和EV表现出品系特异性治疗效果,表明根据个体遗传背景定制微生物干预措施对于优化治疗效果可能至关重要。视频摘要。