Suppr超能文献

一种适用于拟合所有类型交配系统的两性种群预测模型的强大且通用的交配函数。

A Robust and Versatile Mating Function for Two-Sex Population Projection Models Fitting all Types of Mating Systems.

作者信息

Cachelou Jessica, Coste Christophe, Gaillard Jean-Michel, Chassagneux Agathe, Richard Emmanuelle, Baubet Eric, Gamelon Marlène

机构信息

Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, CNRS, Université Lyon 1, Villeurbanne, France.

Fondation François Sommer, Pôle Nature, Paris, France.

出版信息

Ecol Lett. 2024 Nov;27(11):e70013. doi: 10.1111/ele.70013.

Abstract

Commonly used two-sex discrete-time population projection models rely on mating functions developed for continuous-time frameworks that overestimate the number of unions between reproductive individuals. This has important consequences for our understanding of the evolution and demography of two-sex populations and consequently for management and conservation. Here, we propose a novel mating function that is robust by obeying all properties necessary to be ecologically valid and flexible by accommodating all mating systems and efficiency in mating encounters. We illustrate the usefulness of this novel function with an application to the sexually size-dimorphic and polygynous wild boar (Sus scrofa). We show that the population growth rate depends on the harem size, the operational sex ratio, and the mating efficiency. This novel function can be applied to all mating systems and tactics and is highly relevant in the context of global changes under which mating systems and mating efficiency are expected to change.

摘要

常用的两性离散时间种群预测模型依赖于为连续时间框架开发的交配函数,这些函数高估了生殖个体之间的结合数量。这对我们理解两性种群的进化和人口统计学具有重要影响,进而对管理和保护也有重要影响。在此,我们提出了一种新颖的交配函数,它通过遵循生态有效性所需的所有属性而具有稳健性,并通过适应所有交配系统和交配相遇效率而具有灵活性。我们通过将其应用于具有两性体型二态性和多配偶制的野猪(Sus scrofa)来说明这种新颖函数的有用性。我们表明,种群增长率取决于后宫规模、操作性别比和交配效率。这种新颖的函数可以应用于所有交配系统和策略,并且在预计交配系统和交配效率会发生变化的全球变化背景下具有高度相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0318/11612543/ba7ae07692b7/ELE-27-0-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验