Dickhardt Fabian J, Panat Sreedath, Varanasi Kripa K
Department of Mechanical Engineering, Massachusetts Institute of Technology, 127 Massachusetts Avenue, Cambridge, MA, 02142, USA.
Small. 2025 Jan;21(3):e2408645. doi: 10.1002/smll.202408645. Epub 2024 Dec 2.
Dust accumulation on solar panels is a mjor operational challenge faced by the photovoltaic industry. Removing dust using water-based cleaning is expensive and unsustainable. Dust repulsion via charge induction is an efficient way to clean solar panels and recover power output without consuming any water. However, it is still challenging to remove particles of ≈30 µm and smaller because Van der Waals force of adhesion dominates electrostatic force of repulsion. Here, the study proposes nano-textured, transparent, electrically conductive glass surfaces to significantly enhance electrostatic dust removal for particles smaller than ≈30 µm. We perform atomic force microscopy pull-off force experiments and demonstrates that nano-textured surfaces reduce the force of adhesion of silica micro-particles by up to 2 orders of magnitude compared to un-textured surfaces from 460 to 8.6 nN. We show that reduced adhesion on nano-textured surfaces results in significantly better dust removal of small particles compared to non-textured or micro-textured surfaces, reducing the surface coverage from 35% to 10%. We fabricate transparent, electrically conductive, nano-textured glass that can be retrofitted on solar panel surfaces using copper nano-mask based scalable nano-fabrication technique and shows that 90% of lost power output for particles smaller than ≈10 µm can be recovered.
太阳能板上的灰尘积累是光伏产业面临的一个主要运营挑战。使用水基清洁方法去除灰尘成本高昂且不可持续。通过电荷感应实现灰尘排斥是一种清洁太阳能板并恢复功率输出而不消耗任何水的有效方法。然而,去除约30微米及更小的颗粒仍然具有挑战性,因为范德华附着力主导了静电排斥力。在此,该研究提出了纳米纹理化、透明、导电的玻璃表面,以显著增强对小于约30微米颗粒的静电除尘效果。我们进行了原子力显微镜拉脱力实验,并证明与未纹理化表面相比,纳米纹理化表面可将二氧化硅微粒的附着力降低多达2个数量级,从460纳牛降至8.6纳牛。我们表明,与非纹理化或微纹理化表面相比,纳米纹理化表面上附着力的降低导致小颗粒的除尘效果显著更好,表面覆盖率从35%降至10%。我们使用基于铜纳米掩膜的可扩展纳米制造技术制造了可改装在太阳能板表面的透明、导电、纳米纹理化玻璃,并表明对于小于约10微米的颗粒,可恢复90%损失的功率输出。