He Li-Jun, Qiu Zheng-Hui, Ma Shao-Xia, Zeng Rong-Chang, Lin Cun-Guo
College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, China.
National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao, China.
Biofouling. 2024 Nov;40(10):979-995. doi: 10.1080/08927014.2024.2435023. Epub 2024 Dec 3.
This work investigated the effect of () and () on the microbiologically influenced corrosion (MIC) behaviour of 70Cu-30Ni alloy using surface analysis and electrochemical techniques. The results demonstrated that the mixed medium containing and further accelerated the MIC of 70Cu-30Ni alloy compared to the single species medium. The addition of exogenous pyocyanin (PYO) to the medium increased the maximum pit depth on 70Cu-30Ni alloy from 5.40 μm to 6.59 μm, and the corrosion current density () increased by one order of magnitude. From the perspective of bioenergetics and extracellular electron transfer (EET), the comprehensive MIC mechanism of 70Cu-30Ni alloy induced by and was proposed.
本研究利用表面分析和电化学技术,研究了()和()对70Cu-30Ni合金微生物影响腐蚀(MIC)行为的影响。结果表明,与单一物种介质相比,含有()和()的混合介质进一步加速了70Cu-30Ni合金的MIC。向()介质中添加外源性绿脓菌素(PYO)使70Cu-30Ni合金的最大点蚀深度从5.40μm增加到6.59μm,腐蚀电流密度()增加了一个数量级。从生物能量学和细胞外电子转移(EET)的角度,提出了()和()诱导70Cu-30Ni合金的综合MIC机制。