Dufil Gwennaël, Pham Julie, Diacci Chiara, Daguerre Yohann, Mantione Daniele, Zrig Samia, Näsholm Torgny, Donahue Mary J, Oikonomou Vasileios K, Noël Vincent, Piro Benoit, Stavrinidou Eleni
Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Bredgatan 33, Norrkoping 601 74, Sweden.
Universite Paris Cite, ITODYS, CNRS UMR 7086, 15 rue J.-A. de Baïf, Paris, île-de-France F-750 13, France.
ACS Appl Bio Mater. 2024 Dec 16;7(12):8632-8641. doi: 10.1021/acsabm.4c01425. Epub 2024 Dec 3.
Plants as living organisms, as well as their material-structural components and physiological processes, offer promising elements for developing more sustainable technologies. Previously, we demonstrated that plants could acquire electronic functionality, as their enzymatic activity catalyzes the in vivo polymerization of water-soluble conjugated oligomers. We then leveraged plant-integrated conductors to develop biohybrid energy storage devices and circuits. Here, we extend the concept of plant biohybrids to develop plant-based energy-harvesting devices. We demonstrate plant biohybrids with modified roots that can convert common root exudates, such as glucose, to electricity. To do so, we developed a simple one-step approach to convert living roots to glucose-sensitive electrodes by dipping the root in a solution of the conjugated trimer ETE-S and the enzyme glucose dehydrogenase flavin adenine dinucleotide. The biohybrid device responds to glucose concentrations down to 100 μM while it saturates at 100 mM. The performance of our approach was compared with a classic mediator-based glucose biosensor functionalization method. While the latter method increases the stability of the sensor, it results in less sensitivity and damages the root structure. Finally, we show that glucose oxidation can be combined with the volumetric capacitance of p(ETE-S)-forming devices that generate current in the presence of glucose and store it in the same biohybrid root electrodes. The plant biohybrid devices open a pathway to biologically integrated technology that finds application in low-power devices, for example, sensors for agriculture or the environment.
植物作为生物体,以及它们的物质结构成分和生理过程,为开发更可持续的技术提供了有前景的元素。此前,我们证明植物可以获得电子功能,因为其酶活性催化水溶性共轭低聚物的体内聚合。然后,我们利用植物集成导体开发了生物混合储能装置和电路。在这里,我们扩展了植物生物混合体的概念,以开发基于植物的能量收集装置。我们展示了具有改良根系的植物生物混合体,其可以将常见的根系分泌物(如葡萄糖)转化为电能。为此,我们开发了一种简单的一步法,通过将根浸入共轭三聚体ETE-S和葡萄糖脱氢酶黄素腺嘌呤二核苷酸的溶液中,将活根转化为葡萄糖敏感电极。该生物混合装置对低至100μM的葡萄糖浓度有响应,而在100mM时达到饱和。我们将该方法的性能与基于经典介质的葡萄糖生物传感器功能化方法进行了比较。虽然后一种方法提高了传感器的稳定性,但它导致灵敏度降低并损害根系结构。最后,我们表明葡萄糖氧化可以与形成p(ETE-S)的装置的体积电容相结合,该装置在葡萄糖存在下产生电流并将其存储在相同的生物混合根电极中。植物生物混合装置为生物集成技术开辟了一条途径,该技术可应用于低功耗设备,例如农业或环境传感器。