Suppr超能文献

具有电子根的生物杂交植物 共轭低聚物的聚合。

Biohybrid plants with electronic roots polymerization of conjugated oligomers.

机构信息

Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden.

Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 90183 Umea, Sweden.

出版信息

Mater Horiz. 2021 Nov 29;8(12):3295-3305. doi: 10.1039/d1mh01423d.

Abstract

Plant processes, ranging from photosynthesis through production of biomaterials to environmental sensing and adaptation, can be used in technology integration of functional materials and devices. Previously, plants with integrated organic electronic devices and circuits distributed in their vascular tissue and organs have been demonstrated. To circumvent biological barriers, and thereby access the internal tissue, plant cuttings were used, which resulted in biohybrids with limited lifetime and use. Here, we report intact plants with electronic functionality that continue to grow and develop enabling plant-biohybrid systems that fully maintain their biological processes. The biocatalytic machinery of the plant cell wall was leveraged to seamlessly integrate conductors with mixed ionic-electronic conductivity along the root system of the plants. Cell wall peroxidases catalyzed ETE-S polymerization while the plant tissue served as the template, organizing the polymer in a favorable manner. The conductivity of the resulting p(ETE-S) roots reached the order of 10 S cm and remained stable over the course of 4 weeks while the roots continued to grow. The p(ETE-S) roots were used to build supercapacitors that outperform previous plant-biohybrid charge storage demonstrations. Plants were not affected by the electronic functionalization but adapted to this new hybrid state by developing a more complex root system. Biohybrid plants with electronic roots pave the way for autonomous systems with potential applications in energy, sensing and robotics.

摘要

植物的各种过程,从光合作用到生物材料的生产,再到环境感应和适应,都可以应用于功能材料和器件的技术集成。此前,已经有在植物维管组织和器官中分布的集成有机电子器件和电路的植物被证明。为了规避生物障碍,从而进入内部组织,使用了植物插条,这导致了具有有限寿命和用途的生物杂种。在这里,我们报告了具有电子功能的完整植物,它们继续生长和发育,从而实现了完全维持其生物过程的植物-生物杂种系统。植物细胞壁的生物催化机制被利用来沿着植物根系无缝地整合具有混合离子-电子导电性的导体。细胞壁过氧化物酶在植物组织作为模板的情况下催化 ETE-S 聚合,以有利的方式组织聚合物。所得 p(ETE-S)根的电导率达到 10 S cm 的量级,并在 4 周的时间内保持稳定,而根仍在继续生长。用 p(ETE-S)根制造的超级电容器的性能优于以前的植物-生物杂种电荷存储演示。植物不受电子功能化的影响,但通过发展更复杂的根系来适应这种新的混合状态。具有电子根的生物杂种植物为具有潜在能源、传感和机器人应用的自主系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验