Driessen Sjoerd J, van Garderen Karin A, De Jesus Danilo Andrade, Brea Luisa Sanchez, Barbosa-Breda João, Liefers Bart, Lemij Hans G, Nelson-Ayifah Doreen, Ampong Angelina, Bonnemaijer Pieter W M, Thiadens Alberta A H J, Klaver Caroline C W
Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.
Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
Transl Vis Sci Technol. 2024 Dec 2;13(12):5. doi: 10.1167/tvst.13.12.5.
Optical coherence tomography (OCT)-derived measurements of the optic nerve head (ONH) from different devices are not interchangeable. This poses challenges to patient follow-up and collaborative studies. Here, we present a device-agnostic method for the extraction of OCT biomarkers using artificial intelligence.
ONH-centered OCT volumes from the Heidelberg SPECTRALIS, ZEISS CIRRUS HD-OCT 5000, and Topcon 3D OCT-1000 Mark I/II and 3D OCT-2000 devices were annotated by trained graders. A convolutional neural network (CNN) was trained on these segmented B-scans and utilized to obtain several ONH biomarkers, such as the retinal nerve fiber layer (RNFL) and the minimal rim width (MRW). The CNN results were compared between different devices and to the manufacturer-reported values using an independent test set.
The intraclass correlation coefficient (ICC) for the circumpapillary retinal nerve fiber layer (cpRNFL) at 3.4 mm reported by the CIRRUS and 3D OCT-2000 was 0.590 (95% confidence interval [CI], -0.079 to 0.901), and our CNN resulted in a cpRNFL ICC of 0.667 (95% CI, -0.035 to 0.939). The cpRNFL at 3.5 mm on the CIRRUS, 3D OCT-2000, and SPECTRALIS generated by the CNN resulted in an ICC of 0.656 (95% CI, 0.055-0.922). Comparing the global mean MRWs from the SPECTRALIS between CNN and manufacturer yielded an ICC of 0.983 (95% CI, 0.917-0.997). The CNN ICC for the MRW among the CIRRUS, 3D OCT-2000, and SPECTRALIS was 0.917 (95% CI, 0.947-0.981).
Our device-agnostic feature extraction from ONH OCT scans showed a higher reliability than the measures generated by the manufacturers for cpRNFL. MRW measurements compared very well among the manufacturers.
This open-source software can robustly extract a wide range of biomarkers from any OCT device, removing the dependency on manufacturer-specific algorithms, which has significant implications for patient follow-up and collaborative research.
不同设备通过光学相干断层扫描(OCT)对视神经乳头(ONH)进行的测量结果不可互换。这给患者随访和合作研究带来了挑战。在此,我们提出一种使用人工智能从OCT中提取生物标志物的设备无关方法。
由经过培训的分级人员对来自海德堡SPECTRALIS、蔡司CIRRUS HD-OCT 5000以及拓普康3D OCT-1000 Mark I/II和3D OCT-2000设备的以ONH为中心的OCT容积进行标注。在这些分割后的B扫描图像上训练卷积神经网络(CNN),并利用其获取多个ONH生物标志物,如视网膜神经纤维层(RNFL)和最小视盘边缘宽度(MRW)。使用独立测试集比较不同设备之间的CNN结果以及与制造商报告值的差异。
CIRRUS和3D OCT-2000报告的3.4 mm处视乳头周围视网膜神经纤维层(cpRNFL)的组内相关系数(ICC)为0.590(95%置信区间[CI],-0.079至0.901),而我们的CNN得出的cpRNFL的ICC为0.667(95%CI,-0.035至0.939)。CNN生成的CIRRUS、3D OCT-2000和SPECTRALIS上3.5 mm处的cpRNFL的ICC为0.656(95%CI,0.055 - 0.922)。比较CNN和制造商报告的SPECTRALIS的整体平均MRW得出的ICC为0.983(95%CI,0.917 - 0.997)。CIRRUS、3D OCT-2000和SPECTRALIS之间MRW的CNN ICC为0.917(95%CI,0.947 - 0.981)。
我们从ONH OCT扫描中进行的设备无关特征提取显示,对于cpRNFL,其可靠性高于制造商生成的测量值。各制造商之间的MRW测量结果比较良好。
这种开源软件能够从任何OCT设备中可靠地提取广泛的生物标志物,消除了对特定于制造商算法的依赖,这对患者随访和合作研究具有重要意义。