Suppr超能文献

深度人工智能预测:使用局部进化变换图像和基于结构嵌入的最优描述符与自归一化双向卷积网络预测抗炎肽

DeepAIPs-Pred: Predicting Anti-Inflammatory Peptides Using Local Evolutionary Transformation Images and Structural Embedding-Based Optimal Descriptors with Self-Normalized BiTCNs.

作者信息

Akbar Shahid, Ullah Matee, Raza Ali, Zou Quan, Alghamdi Wajdi

机构信息

Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.

Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, KP 23200, Pakistan.

出版信息

J Chem Inf Model. 2024 Dec 23;64(24):9609-9625. doi: 10.1021/acs.jcim.4c01758. Epub 2024 Dec 3.

Abstract

Inflammation is a biological response to harmful stimuli, playing a crucial role in facilitating tissue repair by eradicating pathogenic microorganisms. However, when inflammation becomes chronic, it leads to numerous serious disorders, particularly in autoimmune diseases. Anti-inflammatory peptides (AIPs) have emerged as promising therapeutic agents due to their high specificity, potency, and low toxicity. However, identifying AIPs using traditional in vivo methods is time-consuming and expensive. Recent advancements in computational-based intelligent models for peptides have offered a cost-effective alternative for identifying various inflammatory diseases, owing to their selectivity toward targeted cells with low side effects. In this paper, we propose a novel computational model, namely, , for the accurate prediction of AIP sequences. The training samples are represented using LBP-PSSM- and LBP-SMR-based evolutionary image transformation methods. Additionally, to capture contextual semantic features, we employed attention-based ProtBERT-BFD embedding and QLC for structural features. Furthermore, differential evolution (DE)-based weighted feature integration is utilized to produce a multiview feature vector. The SMOTE-Tomek Links are introduced to address the class imbalance problem, and a two-layer feature selection technique is proposed to reduce and select the optimal features. Finally, the novel self-normalized bidirectional temporal convolutional networks (SnBiTCN) are trained using optimal features, achieving a significant predictive accuracy of 94.92% and an AUC of 0.97. The generalization of our proposed model is validated using two independent datasets, demonstrating higher performance with the improvement of ∼2 and ∼10% of accuracies than the existing state-of-the-art model using Ind-I and Ind-II, respectively. The efficacy and reliability of highlight its potential as a valuable and promising tool for drug development and research academia.

摘要

炎症是机体对有害刺激的一种生物学反应,在通过清除病原微生物促进组织修复方面发挥着关键作用。然而,当炎症发展为慢性时,会引发许多严重疾病,尤其是在自身免疫性疾病中。抗炎肽(AIPs)因其高特异性、高效力和低毒性,已成为有前景的治疗药物。然而,使用传统的体内方法鉴定AIPs既耗时又昂贵。基于计算的肽类智能模型的最新进展为鉴定各种炎症性疾病提供了一种经济高效的替代方法,因为它们对靶细胞具有选择性且副作用低。在本文中,我们提出了一种新颖的计算模型,即 ,用于准确预测AIP序列。训练样本使用基于LBP-PSSM和LBP-SMR的进化图像变换方法进行表示。此外,为了捕捉上下文语义特征,我们采用了基于注意力的ProtBERT-BFD嵌入和QLC来提取结构特征。此外,利用基于差分进化(DE)的加权特征集成来生成多视图特征向量。引入SMOTE-Tomek Links来解决类不平衡问题,并提出了一种两层特征选择技术来减少和选择最优特征。最后,使用最优特征训练新型自归一化双向时间卷积网络(SnBiTCN),实现了94.92%的显著预测准确率和0.97的AUC。我们提出的模型的泛化能力通过两个独立数据集进行了验证,结果表明,与使用Ind-I和Ind-II的现有最先进模型相比,其准确率分别提高了约2%和10%,性能更高。 的有效性和可靠性突出了其作为药物开发和研究学术界有价值且有前景的工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验