Dong Junkai, Wang Taige, Wang Tianle, Soejima Tomohiro, Zaletel Michael P, Vishwanath Ashvin, Parker Daniel E
Department of Physics, <a href="https://ror.org/03vek6s52">Harvard University</a>, Cambridge, Massachusetts 02138, USA.
Department of Physics, <a href="https://ror.org/01an7q238">University of California</a>, Berkeley, California 94720, USA.
Phys Rev Lett. 2024 Nov 15;133(20):206503. doi: 10.1103/PhysRevLett.133.206503.
Recent experiments on rhombohedral pentalayer graphene with a substrate-induced moiré potential have identified both Chern insulators and fractional quantum Hall states at zero magnetic field. Surprisingly, these states are observed in strong displacement fields where the effects of the moiré lattice are weak, and seem to be readily accessed without fine-tuning. To address these experimental puzzles, we study a model of interacting electrons in this geometry. Within self-consistent Hartree-Fock (SCHF) calculations, we find an isolated Chern band with small bandwidth and good quantum geometry. Exact diagonalization and density-matrix renormalization group calculations both confirm the band hosts fractional quantum Hall states without a magnetic field. Remarkably, the Chern band is stable at a wide range of angles, at four through six rhombohedral layers, at varying rhombohedral hopping parameters, and-most strikingly-survives in SCHF calculations when the moiré potential vanishes. In this limit, the state spontaneously breaks time-reversal and translation symmetry simultaneously, giving a topological crystalline state that we term the "anomalous Hall crystal." We argue this is a general mechanism to create stable Chern bands in rhombohedral multilayer graphene, opening the door to studying the interplay between electronic topology, fractionalization, and spontaneous translation symmetry breaking.
最近对具有衬底诱导莫尔势的菱面体五层石墨烯进行的实验,在零磁场下识别出了陈绝缘体和分数量子霍尔态。令人惊讶的是,这些态是在莫尔晶格效应较弱的强位移场中观察到的,而且似乎无需精细调节就能轻易实现。为了解决这些实验难题,我们研究了这种几何结构中相互作用电子的模型。在自洽哈特里 - 福克(SCHF)计算中,我们发现了一个带宽小且具有良好量子几何性质的孤立陈带。精确对角化和密度矩阵重整化群计算均证实该能带在无磁场情况下存在分数量子霍尔态。值得注意的是,陈带在很宽的角度范围内、在四层到六层的菱面体层中、在不同的菱面体跳跃参数下都是稳定的,而且最引人注目的是,当莫尔势消失时,它在SCHF计算中仍然存在。在这种极限情况下,该态同时自发地打破了时间反演对称性和平移对称性,产生了一种我们称之为“反常霍尔晶体”的拓扑晶体态。我们认为这是在菱面体多层石墨烯中创建稳定陈带的一种通用机制,为研究电子拓扑、分数化和自发平移对称性破缺之间的相互作用打开了大门。