Roy Ankit, Hubbard Lance, Overman Nicole R, Fiedler Kevin R, Horangic Diana, Hilty Floyd, Taheri Mitra L, Schreiber Daniel K, Olszta Matthew J
Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
Sci Rep. 2024 Dec 3;14(1):30068. doi: 10.1038/s41598-024-79755-8.
Condensate ring formation can be used as a benchmark in welding processes to assess the efficiency and quality of the weld. Condensate formation is critical as the resulting condensate settles into the powder thereby altering the quality of unconsolidated powder. This study investigates the intricate relationship between alloy composition, vapor pressure, and condensate ring thickness as seen in a two-dimensional micrograph. To study the process, laser spot welding was performed on 9 different alloys, and the inner spot weld diameter along with the condensate ring formation was studied. Leveraging machine learning models, experimental observations, and molecular dynamics simulations, we explore the fundamental factors governing condensate ring formation. The models, adept at predicting weld spot diameter and condensate ring thickness, identify laser power as a primary determinant for weld spot diameter followed by physical properties like hardness and density. Conversely, for condensate ring thickness, vapor pressure and melting point descriptors consistently emerge as paramount, as validated across all models. Molecular dynamics simulations on Ni-Cr alloys elucidate the vaporization dynamics, confirming the role of vapor pressure in governing surface vaporization. Our findings underscore the pivotal influence of vapor pressure and melting point descriptors in condensate ring formation. The convergence of machine learning predictions and simulation insights elucidates the dominance of these descriptors, offering crucial insights into alloy design strategies to minimize condensate ring formation in laser welding processes.
冷凝环的形成可作为焊接过程中的一个基准,用于评估焊接的效率和质量。冷凝的形成至关重要,因为产生的冷凝物会沉降到粉末中,从而改变未固结粉末的质量。本研究在二维显微照片中研究了合金成分、蒸气压和冷凝环厚度之间的复杂关系。为了研究该过程,对9种不同的合金进行了激光点焊,并研究了内部点焊直径以及冷凝环的形成。利用机器学习模型、实验观察和分子动力学模拟,我们探索了控制冷凝环形成的基本因素。这些模型擅长预测焊点直径和冷凝环厚度,确定激光功率是焊点直径的主要决定因素,其次是硬度和密度等物理性质。相反,对于冷凝环厚度,蒸气压和熔点描述符始终是最重要的,这在所有模型中都得到了验证。对镍铬合金的分子动力学模拟阐明了汽化动力学,证实了蒸气压在控制表面汽化中的作用。我们的研究结果强调了蒸气压和熔点描述符在冷凝环形成中的关键影响。机器学习预测和模拟见解的趋同阐明了这些描述符的主导地位,为合金设计策略提供了关键见解,以尽量减少激光焊接过程中的冷凝环形成。