Suppr超能文献

使用机器学习算法和多层感知器预测旋转摩擦点焊参数对相似和异种接头剪切力和熔核直径的影响。

Predicting the Effect of RSW Parameters on the Shear Force and Nugget Diameter of Similar and Dissimilar Joints Using Machine Learning Algorithms and Multilayer Perceptron.

作者信息

Mezher Marwan T, Pereira Alejandro, Trzepieciński Tomasz

机构信息

Departamento de Deseño na Enxeñaría, Universidade de Vigo, 36310 Vigo, Spain.

Institute of Applied Arts, Middle Technical University, Baghdad 10074, Iraq.

出版信息

Materials (Basel). 2024 Dec 20;17(24):6250. doi: 10.3390/ma17246250.

Abstract

Resistance spot-welded joints are crucial parts in contemporary manufacturing technology due to their ubiquitous use in the automobile industry. The necessity of improving manufacturing efficiency and quality at an affordable cost requires deep knowledge of the resistance spot welding (RSW) process and the development of artificial neural network (ANN)- and machine learning (ML)-based modelling techniques, apt for providing essential tools for design, planning, and incorporation in the welding process. Tensile shear force and nugget diameter are the most crucial outputs for evaluating the quality of a resistance spot-welded specimen. This study uses ML and ANN models to predict shear force and nugget diameter responses to RSW parameters. The RSW analysis was executed on similar and dissimilar AISI 304 and grade 2 titanium alloy joints with equal and unequal thicknesses. The input parameters included welding current, pressure, welding duration, squeezing time, holding time, pulse welding, and sheet thickness. Linear regression, Decision tree, Support vector machine (SVM), Random forest (RF), Gradient-boosting, CatBoost, K-Nearest Neighbour (KNN), Ridge, Lasso, and ElasticNet machine learning algorithms, along with two different structures of Multilayer Perceptron, were utilized for studying the impact of the RSW parameters on the shear force and nugget diameter. Different validation metrics were applied to assess each model's quality. Two equations were developed to determine the shear force and nugget diameter based on the investigation parameters. The current research also presents a prediction of the Relative Importance (RI) of RSW factors. Shear force and nugget diameter predictions were examined using SHapley (SHAP) Additive Explanations for the first time in the RSW field. Trainbr as the training function and Logsig as the transfer function delivered the best ANN model for predicting shear force in a one-output structure. Trainrp with Tansig made the most accurate predictions for nugget diameter in a one-output structure and for shear force and diameter in a two-output structure. Depending on validation metrics, the Random forest model outperformed the other ML algorithms in predicting shear force or nugget diameter in a one-output model, while the Decision tree model gave the best prediction using a two-output structure. Linear regression made the worst ML predictions for shear force, while ElasticNet made the worst nugget diameter forecasts in a one-output model. However, in two-output models, Lasso made the worst predictions.

摘要

电阻点焊接头在当代制造技术中是关键部件,因为它们在汽车工业中被广泛使用。以可承受的成本提高制造效率和质量的必要性,要求深入了解电阻点焊(RSW)工艺,并开发基于人工神经网络(ANN)和机器学习(ML)的建模技术,这些技术适用于为焊接过程的设计、规划和整合提供重要工具。拉伸剪切力和熔核直径是评估电阻点焊试样质量的最关键输出。本研究使用ML和ANN模型来预测RSW参数对剪切力和熔核直径的响应。对厚度相等和不相等的相似及异种AISI 304和2级钛合金接头进行了RSW分析。输入参数包括焊接电流、压力、焊接持续时间、挤压时间、保持时间、脉冲焊接和板材厚度。利用线性回归、决策树、支持向量机(SVM)、随机森林(RF)、梯度提升、CatBoost、K近邻(KNN)、岭回归、套索回归和弹性网络机器学习算法,以及两种不同结构的多层感知器,来研究RSW参数对剪切力和熔核直径的影响。应用不同的验证指标来评估每个模型的质量。基于研究参数开发了两个方程来确定剪切力和熔核直径。当前的研究还给出了RSW因素相对重要性(RI)的预测。在RSW领域首次使用SHapley(SHAP)加法解释来检验剪切力和熔核直径预测。Trainbr作为训练函数,Logsig作为传递函数,在单输出结构中给出了预测剪切力的最佳ANN模型。Trainrp与Tansig在单输出结构中对熔核直径以及在双输出结构中对剪切力和直径做出了最准确的预测。根据验证指标,在单输出模型中预测剪切力或熔核直径时,随机森林模型优于其他ML算法,而决策树模型在双输出结构中给出了最佳预测。线性回归对剪切力的ML预测最差,而在单输出模型中弹性网络对熔核直径的预测最差。然而,在双输出模型中,套索回归的预测最差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a848/11678891/c89bed755faa/materials-17-06250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验