Suppr超能文献

用于太阳能热应用的机器学习优化高效石墨烯基超宽带太阳能吸收器。

Machine learning optimized efficient graphene-based ultra-broadband solar absorber for solar thermal applications.

作者信息

Alsharari Meshari, Han Bo Bo, Patel Shobhit K, Kumar Om Prakash, Aliqab Khaled, Armghan Ammar

机构信息

Department of Electrical Engineering, College of Engineering, Jouf University, Sakaka, 72388, Saudi Arabia.

Department of Information and Communication Technology, Marwadi University, Rajkot, Gujarat, 360003, India.

出版信息

Sci Rep. 2024 Dec 3;14(1):30061. doi: 10.1038/s41598-024-79120-9.

Abstract

We designed an ultra-broadband graphene absorber structure with the applied resonator design based on the Al-AlSb-Cr structure, and a thin effective layer of graphene is inserted. To develop the role of the graphene in solar absorbers, the current structure investigates above 98% for 1500 nm bandwidth and 2800 nm (overall bandwidth) for 93.68%. In this study, the procedure of the investigated design in flow chat configuration, the multi-step presentation of the developed layers, and the analysis of the used parameters will be involved. The design is optimized using machine learning algorithm. The optimized design shows good performance compared to the other system. The newly investigated graphene design can be absorbed not only in visible places but also in near-infrared energy and ultraviolet zones. The other applications of the light trapping process, photovoltaic devices, and energy harvesting can also be used.

摘要

我们基于Al-AlSb-Cr结构设计了一种采用应用谐振器设计的超宽带石墨烯吸收器结构,并插入了一层薄的有效石墨烯层。为了发挥石墨烯在太阳能吸收器中的作用,当前结构在1500纳米带宽内的吸收率高于98%,在2800纳米(总带宽)内的吸收率为93.68%。在本研究中,将涉及流程图配置中所研究设计的过程、所开发层的多步呈现以及所用参数的分析。该设计使用机器学习算法进行了优化。与其他系统相比,优化后的设计表现出良好的性能。新研究的石墨烯设计不仅可以在可见光区域吸收,还可以在近红外能量和紫外线区域吸收。光捕获过程的其他应用、光伏器件以及能量收集也都可以使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae53/11615313/2116ead89ce8/41598_2024_79120_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验