Suppr超能文献

通过机器学习辅助的离体共聚焦激光扫描显微镜检测基底细胞癌

Detection of basal cell carcinoma by machine learning-assisted ex vivo confocal laser scanning microscopy.

作者信息

Avci Pinar, Düsedau Marie C, Padrón-Laso Víctor, Jonke Zan, Fenderle Ramona, Neumeier Florian, Ikeliani Ikenna U

机构信息

Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany.

Munich Innovation Labs GmbH, Munich, Germany.

出版信息

Int J Dermatol. 2025 Apr;64(4):684-692. doi: 10.1111/ijd.17519. Epub 2024 Dec 3.

Abstract

BACKGROUND

Ex vivo confocal laser scanning microscopy (EVCM) is an emerging imaging modality that enables near real-time histology of whole tissue samples. However, the adoption of EVCM into clinical routine is partly limited because the recognition of modality-specific diagnostic features requires specialized training. Therefore, we aimed to build a machine learning algorithm for the detection of basal cell carcinoma (BCC) in images acquired using EVCM and, in turn, facilitate the examiner's decision-making process.

METHODS

In this proof-of-concept study, histologically confirmed BCC fresh tissue samples were used to generate 50 EVCM images to train and assess a convolutional neural network architecture (MobileNet-V1) via tenfold cross-validation.

RESULTS

Overall sensitivity and specificity of the model for detecting BCC and tumor-free regions on EVCM images compared to expert evaluation were 0.88 and 0.85, respectively. We constructed receiver operator characteristic and precision-recall curves from the aggregated tenfold cross-validation to assess the model's performance; the area under the curve was 0.94 and 0.87, respectively. Subsequently, the performance of one of the selected machine learning models was assessed with 19 new EVCM images of tumor-containing (n = 10) and 9 tumor-free (n = 9) skin tissue. A sensitivity of 0.83 and a specificity of 0.92 were achieved for the BCC group. The specificity for the tumor-free control group was 0.98.

CONCLUSION

The deep learning model developed in our study holds the potential to assist the diagnostic decision-making process and diminish the training time of novices by depicting tumor-positive regions in EVCM images.

摘要

背景

离体共聚焦激光扫描显微镜(EVCM)是一种新兴的成像方式,能够对整个组织样本进行近实时组织学检查。然而,EVCM在临床常规应用中受到一定限制,因为识别特定模态的诊断特征需要专门培训。因此,我们旨在构建一种机器学习算法,用于检测使用EVCM获取的图像中的基底细胞癌(BCC),从而辅助检查人员的决策过程。

方法

在这项概念验证研究中,使用经组织学证实的BCC新鲜组织样本生成50张EVCM图像,通过十折交叉验证来训练和评估卷积神经网络架构(MobileNet-V1)。

结果

与专家评估相比,该模型在检测EVCM图像上的BCC和无肿瘤区域时,总体灵敏度和特异性分别为0.88和0.85。我们根据汇总的十折交叉验证构建了受试者工作特征曲线和精确召回率曲线,以评估模型性能;曲线下面积分别为0.94和0.87。随后,使用19张新的含肿瘤(n = 10)和无肿瘤(n = 9)皮肤组织的EVCM图像评估所选机器学习模型之一的性能。BCC组的灵敏度为0.83,特异性为0.92。无肿瘤对照组的特异性为0.98。

结论

我们研究中开发的深度学习模型具有辅助诊断决策过程的潜力,并通过描绘EVCM图像中的肿瘤阳性区域来减少新手的培训时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验