Suppr超能文献

皮肤高光谱成像与机器学习准确预测鱼类肌肉中多不饱和脂肪酸含量

Skin hyperspectral imaging and machine learning to accurately predict the muscular poly-unsaturated fatty acids contents in fish.

作者信息

Cao Yi-Ming, Zhang Yan, Wang Qi, Zhao Ran, Hou Mingxi, Yu Shuang-Ting, Wang Kai-Kuo, Chen Ying-Jie, Sun Xiao-Qing, Liu Shijing, Li Jiong-Tang

机构信息

Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.

Chinese Academy of Agricultural Sciences, Beijing, 100141, China.

出版信息

Curr Res Food Sci. 2024 Nov 18;9:100929. doi: 10.1016/j.crfs.2024.100929. eCollection 2024.

Abstract

The polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are critical determinants of the nutritional quality of fish. To rapidly and non-destructively determine the muscular PUFAs in living fish, an accuracy technique is urgently needed. In this study, we combined skin hyperspectral imaging (HSI) and machine learning (ML) methods to assess the muscular PUFAs contents of common carp. Hyperspectral images of the live fish skin were acquired in the 400-1000 nm spectral range. The spectral data were preprocessed using Savitzky-Golay (SG), multivariate scattering correction (MSC), and standard normal variable (SNV) methods, respectively. The competitive adaptive reweighted sampling (CARS) method was applied to extract the optimal wavelengths. With the skin spectra of fish, five ML methods, including the extreme learning machine (ELM), random forest (RF), radial basis function (RBF), back propagation (BP), and least squares support vector machine (LS-SVM) methods, were used to predict the PUFAs and EPA + DHA contents. With the spectral data processed with the SG, the RBF model achieved outstanding performance in predicting the EPA + DHA and PUFAs contents, yielding coefficients of determination (R ) of 0.9914 and 0.9914, root mean square error (RMSE) of 0.3352 and 0.3346, and mean absolute error (MAE) of 0.2659 and 0.2660, respectively. Finally, the visualization distribution maps under the optimal model would facilitate the direct determination of the fillet PUFAs and EPA + DHA contents. The combination of skin HSI and the optimal ML method would be promising to rapidly select living fish having high muscular PUFAs contents.

摘要

多不饱和脂肪酸(PUFAs),尤其是二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),是鱼类营养品质的关键决定因素。为了快速、无损地测定活鱼肌肉中的PUFAs,迫切需要一种精确的技术。在本研究中,我们结合皮肤高光谱成像(HSI)和机器学习(ML)方法来评估鲤鱼肌肉中PUFAs的含量。在400-1000nm光谱范围内采集活鱼皮肤的高光谱图像。光谱数据分别采用Savitzky-Golay(SG)、多元散射校正(MSC)和标准正态变量(SNV)方法进行预处理。应用竞争性自适应重加权采样(CARS)方法提取最佳波长。利用鱼的皮肤光谱,采用极限学习机(ELM)、随机森林(RF)、径向基函数(RBF)、反向传播(BP)和最小二乘支持向量机(LS-SVM)等五种ML方法预测PUFAs和EPA+DHA含量。对于经SG处理的光谱数据,RBF模型在预测EPA+DHA和PUFAs含量方面表现出色,决定系数(R)分别为0.9914和0.9914,均方根误差(RMSE)分别为0.3352和0.3346,平均绝对误差(MAE)分别为0.2659和0.2660。最后,最优模型下的可视化分布图将有助于直接测定鱼片PUFAs和EPA+DHA的含量。皮肤HSI与最优ML方法的结合有望快速筛选出肌肉中PUFAs含量高的活鱼。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1595/11612356/a2c16af4b6d2/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验