Shi Wei, Cao Yina, Chen Fangni, Tong Wei, Zhang Lei, Wan Jian
College of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China.
Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China.
Front Neurosci. 2024 Nov 19;18:1474782. doi: 10.3389/fnins.2024.1474782. eCollection 2024.
Epilepsy is an irregular and recurrent cerebral dysfunction that significantly impacts the affected individual's social functionality and quality of life. This study aims to integrate cognitive dynamic attributes of the brain into seizure prediction, evaluating the effectiveness of various characterization perspectives for seizure prediction, while delving into the impact of varying fragment lengths on the performance of each characterization. We adopted microstate analysis to extract the dynamic properties of cognitive states, calculated the EEG-based and microstate-based features to characterize nonlinear attributes, and assessed the power values across different frequency bands to represent the spectral information of the EEG. Based on the aforementioned characteristics, the predictor achieved a sensitivity of 93.82% on the private FH-ZJU seizure dataset and 93.22% on the Siena Scalp EEG dataset. The study outperforms state-of-the-art works in terms of sensitivity metrics in seizure prediction, indicating that it is crucial to incorporate cognitive dynamic attributes of the brain in seizure prediction.
癫痫是一种不规则且反复发作的脑功能障碍,会对受影响个体的社会功能和生活质量产生重大影响。本研究旨在将大脑的认知动态属性整合到癫痫发作预测中,评估癫痫发作预测中各种特征描述视角的有效性,同时深入探讨不同片段长度对每种特征描述性能的影响。我们采用微状态分析来提取认知状态的动态属性,计算基于脑电图和基于微状态的特征以表征非线性属性,并评估不同频段的功率值以表示脑电图的频谱信息。基于上述特征,该预测器在私有FH-ZJU癫痫发作数据集上的灵敏度达到了93.82%,在锡耶纳头皮脑电图数据集上的灵敏度为93.22%。在癫痫发作预测的灵敏度指标方面,该研究优于现有最先进的研究成果,表明将大脑的认知动态属性纳入癫痫发作预测至关重要。