Suppr超能文献

使用 LIGER 从多个单细胞数据集联合定义细胞类型。

Jointly defining cell types from multiple single-cell datasets using LIGER.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Broad Institute of Harvard and MIT, Cambridge, MA, USA.

出版信息

Nat Protoc. 2020 Nov;15(11):3632-3662. doi: 10.1038/s41596-020-0391-8. Epub 2020 Oct 12.

Abstract

High-throughput single-cell sequencing technologies hold tremendous potential for defining cell types in an unbiased fashion using gene expression and epigenomic state. A key challenge in realizing this potential is integrating single-cell datasets from multiple protocols, biological contexts, and data modalities into a joint definition of cellular identity. We previously developed an approach, called linked inference of genomic experimental relationships (LIGER), that uses integrative nonnegative matrix factorization to address this challenge. Here, we provide a step-by-step protocol for using LIGER to jointly define cell types from multiple single-cell datasets. The main stages of the protocol are data preprocessing and normalization, joint factorization, quantile normalization and joint clustering, and visualization. We describe how to jointly define cell types from single-cell RNA-seq (scRNA-seq) and single-nucleus ATAC-seq (snATAC-seq) data, but similar steps apply across a wide range of other settings and data types, including cross-species analysis, single-nucleus DNA methylation, and spatial transcriptomics. Our protocol contains examples of expected results, describes common pitfalls, and relies only on our freely available, open-source R implementation of LIGER. We also provide R Markdown tutorials showing the outputs from each individual code segment. The analysis process can be performed in 1-4 h, depending on dataset size, and assumes no specialized bioinformatics training.

摘要

高通量单细胞测序技术具有通过基因表达和表观基因组状态以无偏倚的方式定义细胞类型的巨大潜力。实现这一潜力的一个关键挑战是将来自多个方案、生物背景和数据模态的单细胞数据集整合到对细胞身份的联合定义中。我们之前开发了一种称为基因组实验关系的链接推断(LIGER)的方法,该方法使用集成非负矩阵分解来解决这一挑战。在这里,我们提供了一个使用 LIGER 从多个单细胞数据集联合定义细胞类型的分步协议。该协议的主要阶段包括数据预处理和归一化、联合因子分解、分位数归一化和联合聚类以及可视化。我们描述了如何从单细胞 RNA-seq(scRNA-seq)和单核 ATAC-seq(snATAC-seq)数据联合定义细胞类型,但类似的步骤适用于广泛的其他设置和数据类型,包括跨物种分析、单核 DNA 甲基化和空间转录组学。我们的协议包含预期结果的示例,描述了常见的陷阱,并仅依赖于我们免费提供的、开源的 LIGER R 实现。我们还提供了 R Markdown 教程,展示了每个单独代码段的输出。分析过程可以在 1-4 小时内完成,具体取决于数据集的大小,并且不需要专门的生物信息学培训。

相似文献

2
Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.单细胞 RNA 测序分析:分步概述。
Methods Mol Biol. 2021;2284:343-365. doi: 10.1007/978-1-0716-1307-8_19.
9
A Bioinformatic Toolkit for Single-Cell mRNA Analysis.用于单细胞mRNA分析的生物信息学工具包
Methods Mol Biol. 2019;1979:433-455. doi: 10.1007/978-1-4939-9240-9_26.
10
A Single-Cell Sequencing Guide for Immunologists.免疫学家单细胞测序指南
Front Immunol. 2018 Oct 23;9:2425. doi: 10.3389/fimmu.2018.02425. eCollection 2018.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验