Smerigan Adam, Hoffman Adam S, Ostervold Lars, Hong Jiyun, Perez-Aguillar Jorge, Caine Ash C, Greenlee Lauren, Bare Simon R
Department of Chemical Engineering Pennsylvania State University University Park PA USA.
Stanford Synchrotron Radiation Laboratory SLAC National Accelerator Laboratory Menlo Park CA94025 USA.
J Appl Crystallogr. 2024 Nov 22;57(Pt 6):1913-1923. doi: 10.1107/S1600576724010240. eCollection 2024 Dec 1.
The unique properties of the lanthanide (Ln) elements make them critical components of modern technologies, such as lasers, anti-corrosive films and catalysts. Thus, there is significant interest in establishing structure-property relationships for Ln-containing materials to advance these technologies. Extended X-ray absorption fine structure (EXAFS) is an excellent technique for this task considering its ability to determine the average local structure around the Ln atoms for both crystalline and amorphous materials. However, the limited availability of EXAFS reference spectra of the Ln oxides and challenges in the EXAFS analysis have hindered the application of this technique to these elements. The challenges include the limited -range available for the analysis due to the superposition of -edges on the EXAFS, multielectron excitations (MEEs) creating erroneous peaks in the EXAFS and the presence of inequivalent absorption sites. Herein, we removed MEEs to model the local atomic environment more accurately for light Ln oxides. Further, we investigated the use of cubic and non-cubic lattice expansion to minimize the fitting parameters needed and connect the fitting parameters to physically meaningful crystal parameters. The cubic expansion reduced the number of fitting parameters but resulted in a statistically worse fit. The non-cubic expansion resulted in a similar quality fit and showed non-isotropic expansion in the crystal lattice of NdO. In total, the EXAFS spectra and the fits for the entire set of Ln oxides (excluding promethium) are included. The knowledge developed here can assist in the structural determination of a wide variety of Ln compounds and can further studies on their structure-property relationships.
镧系(Ln)元素的独特性质使其成为现代技术(如激光、防腐薄膜和催化剂)的关键组成部分。因此,建立含Ln材料的结构-性能关系以推动这些技术发展具有重大意义。扩展X射线吸收精细结构(EXAFS)是完成这项任务的一项出色技术,因为它能够确定晶体和非晶材料中Ln原子周围的平均局部结构。然而,Ln氧化物的EXAFS参考光谱可用性有限以及EXAFS分析中的挑战阻碍了该技术在这些元素上的应用。这些挑战包括由于EXAFS上边缘的叠加导致分析可用范围有限、多电子激发(MEEs)在EXAFS中产生错误峰以及存在不等价吸收位点。在此,我们去除了MEEs,以便更准确地模拟轻质Ln氧化物的局部原子环境。此外,我们研究了使用立方和非立方晶格膨胀来最小化所需的拟合参数,并将拟合参数与具有物理意义的晶体参数联系起来。立方膨胀减少了拟合参数的数量,但在统计上拟合效果更差。非立方膨胀导致了类似质量的拟合,并在NdO的晶格中显示出非各向同性膨胀。总共包括了整套Ln氧化物(不包括钷)的EXAFS光谱和拟合结果。此处所开发的知识有助于确定各种Ln化合物的结构,并可进一步研究它们的结构-性能关系。