Suppr超能文献

自我学习与社会学习对语言动态的集体效应:社交网络中的命名博弈方法

Collective effect of self-learning and social learning on language dynamics: a naming game approach in social networks.

作者信息

Wen Tao, Chen Yu-Wang, Lambiotte Renaud

机构信息

Decision and Cognitive Sciences Research Centre,The University of Manchester, Manchester M15 6PB, UK.

Alan Turing Institute, London, NW1 2DB, UK.

出版信息

J R Soc Interface. 2024 Dec;21(221):20240406. doi: 10.1098/rsif.2024.0406. Epub 2024 Dec 4.

Abstract

Linguistic rules form the cornerstone of human communication, enabling people to understand and interact with one another effectively. However, there are always irregular exceptions to regular rules, with one of the most notable being the past tense of verbs in English. In this work, a naming game approach is developed to investigate the collective effect of social behaviours on language dynamics, which encompasses social learning, self-learning with preference and forgetting due to memory constraints. Two features that pertain to individuals' influential ability and affinity are introduced to assess an individual's role of social influence and discount the information they communicate in the Bayesian inference-based social learning model. Our findings suggest that network heterogeneity and community structure significantly impact language dynamics, as evidenced in synthetic and real-world networks. Furthermore, self-learning significantly enhances the process of language regularization, while forgetting has a relatively minor impact. The results highlight the substantial influence of network structure and social behaviours on the transition of opinions, from consensus to polarization, demonstrating its importance in language dynamics. This work sheds new light on how individual learners adopt language rules through the lenses of complexity science and decision science, advancing our understanding of language dynamics.

摘要

语言规则构成了人类交流的基石,使人们能够有效地相互理解和互动。然而,常规规则总是存在不规则的例外情况,其中最显著的一个例子就是英语中动词的过去式。在这项研究中,我们开发了一种命名游戏方法来研究社会行为对语言动态的集体影响,这包括社会学习、有偏好的自我学习以及由于记忆限制导致的遗忘。我们引入了与个体影响力和亲和力相关的两个特征,以评估个体在社会影响中的作用,并在基于贝叶斯推理的社会学习模型中对他们所传达的信息进行折扣。我们的研究结果表明,网络异质性和社区结构对语言动态有显著影响,这在合成网络和现实世界网络中都得到了证明。此外,自我学习显著增强了语言规范化的过程,而遗忘的影响相对较小。这些结果凸显了网络结构和社会行为对观点从共识到两极分化转变的重大影响,证明了其在语言动态中的重要性。这项研究从复杂性科学和决策科学的角度为个体学习者如何采用语言规则提供了新的见解,增进了我们对语言动态的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4b2/11615964/a6b7477e7fd1/rsif.2024.0406.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验