Suppr超能文献

使用深度学习对三维超声中的胎儿颅内体积进行自动分割:识别产前脑发育中的性别差异。

Automated Segmentation of Fetal Intracranial Volume in Three-Dimensional Ultrasound Using Deep Learning: Identifying Sex Differences in Prenatal Brain Development.

作者信息

de Zwarte Sonja M C, Teeuw Jalmar, He Jiaojiao, Bekker Mireille N, van Sloun Ruud J G, Hulshoff Pol Hilleke E

机构信息

Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Department of Developmental Psychology, Utrecht University, Utrecht, The Netherlands.

出版信息

Hum Brain Mapp. 2024 Dec 1;45(17):e70058. doi: 10.1002/hbm.70058.

Abstract

The human brain undergoes major developmental changes during pregnancy. Three-dimensional (3D) ultrasound images allow for the opportunity to investigate typical prenatal brain development on a large scale. Transabdominal ultrasound can be challenging due to the small fetal brain and its movement, as well as multiple sweeps that may not yield high-quality images, especially when brain structures are unclear. By applying the latest developments in artificial intelligence for automated image processing allowing automated training of brain anatomy in these images retrieving reliable quantitative brain measurements becomes possible at a large scale. Here, we developed a convolutional neural network (CNN) model for automated segmentation of fetal intracranial volume (ICV) from 3D ultrasound. We applied the trained model in a large longitudinal population sample from the YOUth Baby and Child cohort measured at 20- and 30-week of gestational age to investigate biological sex differences in fetal ICV as a proof-of-principle and validation for our automated method (N = 2235 individuals with 43492 ultrasounds). A total of 168 annotated, randomly selected, good quality 3D ultrasound whole-brain images were included to train a 3D CNN for automated fetal ICV segmentation. A data augmentation strategy provided physical variation to train the network. K-fold cross-validation and Bayesian optimization were used for network selection and the ensemble-based system combined multiple networks to form the final ensemble network. The final ensemble network produced consistent and high-quality segmentations of ICV (Dice Similarity Coefficient (DSC) > 0.93, Hausdorff Distance (HD): HD < 4.6 voxels, and HD < 1.4 mm). In addition, we developed an automated quality control procedure to include the ultrasound scans that successfully predicted ICV from all 43492 3D ultrasounds available in all individuals, no longer requiring manual selection of the best scan for analysis. Our trained model automatically retrieved ultrasounds with brain data and estimated ICV and ICV growth in 7672 (18%) of ultrasounds in 1762 participants that passed the automatic quality control procedure. Boys had significantly larger ICV at 20-weeks (81.7 ± 0.4 mL vs. 80.8 ± 0.5 mL; B = 2.86; p = 5.7e-14) and 30-weeks (257.0 ± 0.9 mL vs. 245.1 ± 0.9 mL; B = 12.35; p = 8.2e-27) of pregnancy, and more pronounced ICV growth than girls (delta growth 0.12 mL/day; p = 1.8e-5). Our automated artificial intelligence approach provides an opportunity to investigate fetal brain development on a much larger scale and to answer fundamental questions related to prenatal brain development.

摘要

人类大脑在孕期会经历重大的发育变化。三维(3D)超声图像为大规模研究典型的产前脑发育提供了契机。经腹超声检查可能具有挑战性,因为胎儿大脑较小且会移动,而且多次扫描可能无法获得高质量图像,尤其是当脑结构不清楚时。通过应用人工智能在自动图像处理方面的最新进展,能够在这些图像中对脑解剖结构进行自动训练,从而大规模获取可靠的脑容量定量测量结果成为可能。在此,我们开发了一种卷积神经网络(CNN)模型,用于从3D超声中自动分割胎儿颅内体积(ICV)。我们将训练好的模型应用于来自青年婴幼儿队列的大量纵向人群样本,这些样本在孕20周和30周时进行了测量,以研究胎儿ICV中的生物学性别差异,作为我们自动方法的原理验证和验证(N = 2235名个体,有43492次超声检查)。总共纳入了168张经过注释、随机选择的高质量3D超声全脑图像,用于训练用于自动胎儿ICV分割的3D CNN。一种数据增强策略提供了物理变化来训练网络。使用K折交叉验证和贝叶斯优化进行网络选择,基于集成的系统组合多个网络以形成最终的集成网络。最终的集成网络对ICV产生了一致且高质量的分割结果(骰子相似系数(DSC)> 0.93,豪斯多夫距离(HD):HD < 4.6体素,且HD < 1.4毫米)。此外,我们开发了一种自动质量控制程序,以纳入所有个体中43492次可用3D超声中成功预测ICV的超声扫描,不再需要手动选择最佳扫描进行分析。我们训练好的模型自动检索到有脑数据的超声,并在通过自动质量控制程序的176两千名参与者的7672次(18%)超声中估计了ICV和ICV增长情况。男孩在孕20周时的ICV显著更大(81.7 ± 0.4毫升对80.8 ± 0.5毫升;B = 2.86;p = 5.7e - 14),在孕30周时也更大(257.0 ± 0.9毫升对245.1 ± 0.9毫升;B = 12.35;p = 8.2e - 27),并且ICV增长比女孩更明显(增长差值0.12毫升/天;p = 1.8e - 5)。我们的自动人工智能方法为在更大规模上研究胎儿脑发育以及回答与产前脑发育相关的基本问题提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce8/11615793/965881e0b613/HBM-45-e70058-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验