Suppr超能文献

基于概率学习的相干点漂移在三维超声胎儿头部配准中的应用。

Probabilistic Learning Coherent Point Drift for 3D Ultrasound Fetal Head Registration.

机构信息

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yucatán, Mexico.

Biomechatronics Laboratory, School of Engineering and Science, Tecnologico de Monterrey, Guadalajara, Mexico.

出版信息

Comput Math Methods Med. 2020 Jan 31;2020:4271519. doi: 10.1155/2020/4271519. eCollection 2020.

Abstract

Quantification of brain growth is crucial for the assessment of fetal well being, for which ultrasound (US) images are the chosen clinical modality. However, they present artefacts, such as acoustic occlusion, especially after the 18 gestational week, when cranial calcification appears. Fetal US volume registration is useful in one or all of the following cases: to monitor the evolution of fetometry indicators, to segment different structures using a fetal brain atlas, and to align and combine multiple fetal brain acquisitions. This paper presents a new approach for automatic registration of real 3D US fetal brain volumes, volumes that contain a considerable degree of occlusion artefacts, noise, and missing data. To achieve this, a novel variant of the coherent point drift method is proposed. This work employs supervised learning to segment and conform a point cloud automatically and to estimate their subsequent weight factors. These factors are obtained by a random forest-based classification and are used to appropriately assign nonuniform membership probability values of a Gaussian mixture model. These characteristics allow for the automatic registration of 3D US fetal brain volumes with occlusions and multiplicative noise, without needing an initial point cloud. Compared to other intensity and geometry-based algorithms, the proposed method achieves an error reduction of 7.4% to 60.7%, with a target registration error of only 6.38 ± 3.24 mm. This makes the herein proposed approach highly suitable for 3D automatic registration of fetal head US volumes, an approach which can be useful to monitor fetal growth, segment several brain structures, or even compound multiple acquisitions taken from different projections.

摘要

脑生长的量化对于评估胎儿健康至关重要,为此,超声(US)图像是首选的临床模态。然而,它们存在伪影,如声学遮挡,特别是在颅钙化出现后 18 孕周。胎儿 US 体积配准在以下一种或多种情况下非常有用:监测胎儿测量指标的演变、使用胎儿脑图谱分割不同结构,以及对齐和组合多个胎儿脑采集。本文提出了一种新的方法,用于自动注册真实的 3D US 胎儿脑体积,这些体积包含相当程度的遮挡伪影、噪声和缺失数据。为了实现这一点,提出了一种相干点漂移方法的新变体。这项工作采用监督学习自动分割和配准点云,并估计它们的后续权重因子。这些因子是通过基于随机森林的分类获得的,并用于适当分配高斯混合模型的不均匀成员概率值。这些特性允许自动注册带有遮挡和乘法噪声的 3D US 胎儿脑体积,而无需初始点云。与其他基于强度和几何的算法相比,所提出的方法将误差降低了 7.4%至 60.7%,目标配准误差仅为 6.38±3.24mm。这使得所提出的方法非常适合 3D 自动注册胎儿头 US 体积,该方法可用于监测胎儿生长、分割多个脑结构,甚至可以组合来自不同投影的多个采集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57bc/7013355/e8658fbe922e/CMMM2020-4271519.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验