Sui Yuxin, Han Yumei, Qiu Zetian, Yan Bingyang, Zhao Guang-Rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
Appl Biochem Biotechnol. 2025 Mar;197(3):2012-2034. doi: 10.1007/s12010-024-05099-8. Epub 2024 Dec 4.
Taxifolin, also known as dihydroquercetin (DHQ), is a flavonoid recognized for its potent antioxidant properties and a wide range of biological activities, including anti-tumor, antiviral, and immunomodulatory effects. Conventional extraction and chemical synthesis methods for taxifolin are often limited by low yields and associated environmental concerns. In this study, we investigated the heterologous biosynthesis of taxifolin in Yarrowia lipolytica through a combination of metabolic engineering and genome-scale metabolic modeling (GSM), complemented by flux balance analysis (FBA). We engineered Yarrowia lipolytica by introducing key biosynthetic genes and successfully synthesized taxifolin using naringenin (NAR) as a substrate, chosen for its low cost. Fermentation experiments demonstrated an optimal taxifolin yield of 10% at a substrate concentration of 200 mg/L naringenin, with a maximum yield of 26.4 mg/L taxifolin at 1 g/L naringenin. To further enhance production, we applied a marker-free Cre-loxP-based gene integration method, allowing stable genomic integration of key genes, which increased taxifolin yield to 34.9 mg/L at 1 g/L naringenin. Additionally, intermediate metabolites eriodictyol (ERI) and dihydrokaempferol (DHK) accumulated to concentrations of 89.2 mg/L and 21.7 mg/L, respectively. Furthermore, we integrated metabolic data into a GSM and applied FBA to optimize the taxifolin biosynthetic pathway. Through Pareto frontier analysis, sensitivity analysis, flux variability analysis, and single gene deletion simulations, we identified key genetic modifications that significantly enhanced taxifolin yield. Overexpression of GND1 and IDP2 increased yields by 94% and 155%, respectively, while knockout of LIP2 led to a 46% increase. Using tri-baffled shake flasks to improve oxygen supply resulted in a 120% yield increase, whereas YPG medium decreased yield by 59%, validating our model's accuracy. To ensure stable and efficient gene expression, we integrated multi-copy constructs into the ribosomal DNA (rDNA) locus of Yarrowia lipolytica, doubling taxifolin production. These results demonstrate the effectiveness of GSM and FBA in addressing bottlenecks in microbial taxifolin biosynthesis and provide a basis for future optimization and large-scale production.
花旗松素,也被称为二氢槲皮素(DHQ),是一种黄酮类化合物,以其强大的抗氧化性能和广泛的生物活性而闻名,包括抗肿瘤、抗病毒和免疫调节作用。传统的花旗松素提取和化学合成方法往往受到低产量和相关环境问题的限制。在本研究中,我们通过代谢工程和基因组规模代谢建模(GSM)相结合,并辅以通量平衡分析(FBA),研究了解脂耶氏酵母中花旗松素的异源生物合成。我们通过引入关键生物合成基因对解脂耶氏酵母进行工程改造,并成功地以柚皮素(NAR)为底物合成了花旗松素,选择柚皮素是因为其成本低。发酵实验表明,在柚皮素底物浓度为200mg/L时,花旗松素的最佳产量为10%,在柚皮素浓度为1g/L时,花旗松素的最大产量为26.4mg/L。为了进一步提高产量,我们应用了基于无标记Cre-loxP的基因整合方法,使关键基因能够稳定地整合到基因组中,这使得在1g/L柚皮素条件下花旗松素产量提高到34.9mg/L。此外,中间代谢产物圣草酚(ERI)和二氢山奈酚(DHK)的积累浓度分别达到89.2mg/L和21.7mg/L。此外,我们将代谢数据整合到GSM中,并应用FBA来优化花旗松素生物合成途径。通过帕累托前沿分析、敏感性分析、通量变异性分析和单基因缺失模拟,我们确定了显著提高花旗松素产量的关键基因修饰。GND1和IDP2的过表达分别使产量提高了94%和155%,而LIP2的敲除导致产量提高了46%。使用三折式摇瓶改善氧气供应使产量提高了120%,而YPG培养基使产量降低了59%,验证了我们模型的准确性。为了确保稳定和高效的基因表达,我们将多拷贝构建体整合到解脂耶氏酵母的核糖体DNA(rDNA)位点,使花旗松素产量翻倍。这些结果证明了GSM和FBA在解决微生物花旗松素生物合成瓶颈方面的有效性,并为未来的优化和大规模生产提供了基础。