Qi Jie, Fan Xuesong, Hoyos Diego Ibarra, Widom Michael, Liaw Peter K, Poon Joseph
Department of Physics, University of Virginia, Charlottesville, VA 22904, USA.
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA.
Sci Adv. 2024 Dec 6;10(49):eadq0083. doi: 10.1126/sciadv.adq0083. Epub 2024 Dec 4.
Refractory high-entropy alloys (RHEAs) are promising high-temperature structural materials. Their large compositional space poses great design challenges for phase control and high strength-ductility synergy. The present research pioneers using integrated high-throughput machine learning with Monte Carlo simulations supplemented by ab initio calculations to effectively navigate phase selection and mechanical property predictions, developing single-phase ordered B2 aluminum-enriched RHEAs (Al-RHEAs) demonstrating high strength and ductility. These Al-RHEAs achieve remarkable mechanical properties, including compressive yield strengths up to 1.7 gigapascals, fracture strains exceeding 50%, and notable high-temperature strength retention. They also demonstrate a tensile yield strength of 1.0 gigapascals with a ductility of 9%, albeit with B2 ordering. Furthermore, we identify valence electron count domains for alloy ductility and brittleness with the explanation from density functional theory and provide crucial insights into elemental influence on atomic ordering and mechanical performance. The work sets forth a strategic blueprint for high-throughput alloy design and reveals fundamental principles governing the mechanical properties of advanced structural alloys.
难熔高熵合金(RHEAs)是很有前景的高温结构材料。它们巨大的成分空间给相控制和高强度-高延展性协同效应带来了巨大的设计挑战。本研究率先将集成高通量机器学习与蒙特卡洛模拟相结合,并辅以从头算计算,以有效地指导相选择和力学性能预测,开发出了具有高强度和高延展性的单相有序富铝难熔高熵合金(Al-RHEAs)。这些Al-RHEAs具有卓越的力学性能,包括高达1.7吉帕斯卡的压缩屈服强度、超过50%的断裂应变以及显著的高温强度保持率。尽管具有B2有序结构,但它们还展现出1.0吉帕斯卡的拉伸屈服强度和9%的延展性。此外,我们从密度泛函理论的角度确定了合金延展性和脆性的价电子数域,并提供了关于元素对原子有序化和力学性能影响的关键见解。这项工作为高通量合金设计提出了战略蓝图,并揭示了控制先进结构合金力学性能的基本原理。