Suppr超能文献

从二元相图中挖掘出的高熵合金。

High Entropy Alloys Mined From Binary Phase Diagrams.

作者信息

Qi Jie, Cheung Andrew M, Poon S Joseph

机构信息

Department of Physics, University of Virginia, Charlottesville, VA, 22904-4714, USA.

出版信息

Sci Rep. 2019 Oct 29;9(1):15501. doi: 10.1038/s41598-019-50015-4.

Abstract

High entropy alloys (HEA) are a new type of high-performance structural material. Their vast degrees of compositional freedom provide for extensive opportunities to design alloys with tailored properties. However, compositional complexities present challenges for alloy design. Current approaches have shown limited reliability in accounting for the compositional regions of single solid solution and composite phases. For the first time, a phenomenological method analysing binary phase diagrams to predict HEA phases is presented. The hypothesis is that the HEA structural stability is encoded within the phase diagrams. Accordingly, we introduce several phase-diagram inspired parameters and employ machine learning (ML) to classify 600+ reported HEAs based on these parameters. Compared to other large database statistical prediction models, this model gives more detailed and accurate phase predictions. Both the overall HEA prediction and specifically single-phase HEA prediction rate are above 80%. To validate our method, we demonstrated its capability in predicting HEA solid solution phases with or without intermetallics in 42 randomly selected complex compositions, with a success rate of 81%. The presented search approach with high predictive capability can be exploited to interact with and complement other computation-intense methods such as CALPHAD in providing an accelerated and precise HEA design.

摘要

高熵合金(HEA)是一种新型高性能结构材料。其极大的成分自由度为设计具有定制性能的合金提供了广泛机会。然而,成分复杂性给合金设计带来了挑战。目前的方法在考虑单一固溶体和复合相的成分区域时可靠性有限。首次提出了一种通过分析二元相图来预测高熵合金相的唯象方法。其假设是高熵合金的结构稳定性编码在相图中。因此,我们引入了几个受相图启发的参数,并利用机器学习(ML)基于这些参数对600多种已报道的高熵合金进行分类。与其他大型数据库统计预测模型相比,该模型给出了更详细、准确的相预测。高熵合金的总体预测以及特定单相高熵合金的预测率均高于80%。为验证我们的方法,我们展示了其预测42种随机选择的复杂成分中有无金属间化合物的高熵合金固溶体相的能力,成功率为81%。所提出的具有高预测能力的搜索方法可用于与其他计算密集型方法(如CALPHAD)相互作用并互补,以提供加速且精确的高熵合金设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a841/6820750/747ad03bc2c7/41598_2019_50015_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验