Flathers Matthew, Smith Griffin, Wagner Ellen, Fisher Carl Erik, Torous John
Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
Rhode Island School of Design, Providence, Rhode Island, USA.
BMJ Ment Health. 2024 Dec 4;27(1):e301298. doi: 10.1136/bmjment-2024-301298.
This paper investigates how state-of-the-art generative artificial intelligence (AI) image models represent common psychiatric diagnoses. We offer key lessons derived from these representations to inform clinicians, researchers, generative AI companies, policymakers and the public about the potential impacts of AI-generated imagery on mental health discourse.
We prompted two generative AI image models, Midjourney V.6 and DALL-E 3 with isolated diagnostic terms for common mental health conditions. The resulting images were compiled and presented as examples of current AI behaviour when interpreting psychiatric terminology.
The AI models generated image outputs for most psychiatric diagnosis prompts. These images frequently reflected cultural stereotypes and historical visual tropes including gender biases and stigmatising portrayals of certain mental health conditions.
These findings illustrate three key points. First, generative AI models reflect cultural perceptions of mental disorders rather than evidence-based clinical ones. Second, AI image outputs resurface historical biases and visual archetypes. Third, the dynamic nature of these models necessitates ongoing monitoring and proactive engagement to manage evolving biases. Addressing these challenges requires a collaborative effort among clinicians, AI developers and policymakers to ensure the responsible use of these technologies in mental health contexts.
As these technologies become increasingly accessible, it is crucial for mental health professionals to understand AI's capabilities, limitations and potential impacts. Future research should focus on quantifying these biases, assessing their effects on public perception and developing strategies to mitigate potential harm while leveraging the insights these models provide into collective understandings of mental illness.
本文研究了先进的生成式人工智能(AI)图像模型如何呈现常见的精神科诊断。我们从这些呈现中得出关键经验教训,以便向临床医生、研究人员、生成式人工智能公司、政策制定者和公众通报人工智能生成的图像对心理健康讨论的潜在影响。
我们用常见心理健康状况的单独诊断术语提示两个生成式人工智能图像模型,即Midjourney V.6和DALL-E 3。将生成的图像进行汇编,并作为当前人工智能在解释精神科术语时的行为示例展示。
人工智能模型对大多数精神科诊断提示都生成了图像输出。这些图像经常反映文化刻板印象和历史视觉比喻,包括性别偏见以及对某些心理健康状况的污名化描绘。
这些发现说明了三个关键点。第一,生成式人工智能模型反映的是对精神障碍的文化认知,而非基于证据的临床认知。第二,人工智能图像输出重现了历史偏见和视觉原型。第三,这些模型的动态性质需要持续监测和积极参与,以管理不断演变的偏见。应对这些挑战需要临床医生、人工智能开发者和政策制定者共同努力,以确保在心理健康背景下负责任地使用这些技术。
随着这些技术越来越容易获得,心理健康专业人员了解人工智能的能力、局限性和潜在影响至关重要。未来的研究应侧重于量化这些偏见,评估其对公众认知的影响,并制定策略以减轻潜在危害,同时利用这些模型提供的见解促进对精神疾病的集体理解。