Suppr超能文献

含具有强电荷转移的Cu-O-Zn键的异质结纳米酶水凝胶用于加速糖尿病伤口愈合

Heterojunction Nanozyme Hydrogels Containing Cu-O-Zn Bonds with Strong Charge Transfer for Accelerated Diabetic Wound Healing.

作者信息

Li Qiujiang, Xiao Xuanyu, Yan Tianyou, Song Dan, Li Lei, Chen Zhiyu, Zhong Yuting, Deng Wei, Liu Xiaoyan, Song Yueming, Wang Lei, Wang Yunbing

机构信息

Department of Orthopedics Surgery and Orthopedic Research Institute, West China Hospital, National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

Kidney Research Laboratory, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.

出版信息

ACS Appl Mater Interfaces. 2024 Dec 18;16(50):68950-68966. doi: 10.1021/acsami.4c15715. Epub 2024 Dec 4.

Abstract

The complex microenvironment of persistent inflammation and bacterial infection is a major challenge in chronic diabetic wounds. The development of nanozymes capable of efficiently scavenging reactive oxygen species (ROS) is a promising method to promote diabetic wound healing. However, many nanozymes show rather limited antioxidant activity and ROS-dependent antibacterial effects under certain circumstances, further weakening their ability to scavenge ROS. To meet these challenges, electronically regulated bioheterojunction (E-bio-HJ) nanozyme hydrogels derived from metal-organic frameworks (MOFs) were designed and prepared via an interface engineering strategy. Owing to the electron transfer and redistribution effects of the abundant and highly dispersed Cu-O-Zn sites at the heterogeneous interface, the E-bio-HJ nanozymes exhibited catalase (CAT)-like activity with ultrahigh hydrogen peroxide affinity ( = 25.76 mM) and sustained ROS consumption. In addition, owing to the enhanced interfacial effect of E-bio-HJ and the good biocompatibility and cell adhesion of the methacryloylated gelatin (Gel) hydrogel, the E-bio-HJ gelatin hydrogel (E-bio-HJ/Gel) further reduced inflammation by inducing macrophage transformation to the M2 phenotype, accompanied by excellent antimicrobial properties and enhanced cell migration, angiogenesis, and collagen deposition, which synergistically promoted diabetic wound healing. This highly effective and comprehensive strategy offers a new approach for the rapid healing of diabetic wounds.

摘要

持续炎症和细菌感染的复杂微环境是慢性糖尿病伤口面临的主要挑战。开发能够有效清除活性氧(ROS)的纳米酶是促进糖尿病伤口愈合的一种有前景的方法。然而,许多纳米酶在某些情况下表现出相当有限的抗氧化活性和ROS依赖性抗菌作用,进一步削弱了它们清除ROS的能力。为了应对这些挑战,通过界面工程策略设计并制备了源自金属有机框架(MOF)的电子调控生物异质结(E-bio-HJ)纳米酶水凝胶。由于异质界面处丰富且高度分散的Cu-O-Zn位点的电子转移和再分布效应,E-bio-HJ纳米酶表现出过氧化氢酶(CAT)样活性,具有超高的过氧化氢亲和力( = 25.76 mM)并能持续消耗ROS。此外,由于E-bio-HJ的界面效应增强以及甲基丙烯酰化明胶(Gel)水凝胶具有良好的生物相容性和细胞粘附性,E-bio-HJ明胶水凝胶(E-bio-HJ/Gel)通过诱导巨噬细胞向M2表型转变进一步减轻炎症,同时具有出色的抗菌性能以及增强的细胞迁移、血管生成和胶原蛋白沉积,协同促进糖尿病伤口愈合。这种高效且全面的策略为糖尿病伤口的快速愈合提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验