Parida Tanmayee, Luong Minh Anh, Das Santanu, Claverie Alain, Kanjilal Aloke
Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
CEMES-CNRS and Universite de Toulouse, 29 rue J. Marvig, Toulouse, 31055, France.
Small. 2025 Feb;21(7):e2409798. doi: 10.1002/smll.202409798. Epub 2024 Dec 5.
A resistive switching device with precise control over the formation of conductive filaments (CF) holds immense potential for high-density memory arrays and atomic-scale in-memory computing architectures. While ion migration and electrochemical switching mechanisms are well understood, controlling the evolution of CF remains challenging for practical resistive random-access memory (RRAM) deployment. This study introduces a systematic approach to modulate oxygen vacancies (OV) in HfO films of Ag/HfO/Pt-based RRAM devices by controlling the substrate temperature. At 300 °C, the HfO film exhibits a dominant monoclinic phase with maximum OV concentration, which plays a key role in achieving optimal multilevel resistive switching behavior. Self-assembled nanochannels in the HfO films guide CF evolution, and the diffusion of Ag at inside these films suggests a synergistic interplay between OV and Ag⁺ ion migration for reseting the voltage-controlled resistive states. This approach addresses the endurance/retention trade-off with an impressive R/R ratio of ≈8000 while demonstrating growth temperature-driven OV modulation as a tool for multi-bit data storage. These findings provide a blueprint for developing high-performance oxide-based RRAM devices and offer valuable insights into multilevel resistive switching mechanisms, paving the way for future low-power, high-density memory technologies.
一种对导电细丝(CF)形成具有精确控制能力的电阻式开关器件,在高密度存储阵列和原子尺度的内存计算架构方面具有巨大潜力。虽然离子迁移和电化学开关机制已得到充分理解,但对于实际的电阻式随机存取存储器(RRAM)部署而言,控制CF的演变仍然具有挑战性。本研究介绍了一种通过控制衬底温度来调制基于Ag/HfO/Pt的RRAM器件的HfO薄膜中氧空位(OV)的系统方法。在300°C时,HfO薄膜呈现出具有最大OV浓度的主导单斜相,这在实现最佳多级电阻式开关行为中起着关键作用。HfO薄膜中的自组装纳米通道引导CF的演变,并且Ag在这些薄膜内部的扩散表明OV与Ag⁺离子迁移之间存在协同相互作用,以重置电压控制的电阻状态。这种方法以约8000的令人印象深刻的R/R比解决了耐久性/保持性之间的权衡问题,同时证明了生长温度驱动的OV调制作为一种多位数据存储工具。这些发现为开发高性能氧化物基RRAM器件提供了蓝图,并为多级电阻式开关机制提供了有价值的见解,为未来的低功耗、高密度存储技术铺平了道路。