Abou Baker Nermeen, Handmann Uwe
Computer Science Department, Ruhr West University of Applied Sciences, Bottrop, Germany.
Sci Rep. 2024 Dec 4;14(1):30239. doi: 10.1038/s41598-024-81752-w.
Selecting pretrained models for image classification often involves computationally intensive finetuning. This study addresses a research gap in the standardized evaluation of transferability scores, which could simplify model selection by ranking pretrained models without exhaustive finetuning. The motivation is to reduce the computational burden of model selection through a consistent approach that guides practitioners in balancing accuracy and efficiency across tasks. This study evaluates 14 transferability scores on 11 benchmark datasets. It includes both Convolutional Neural Network (CNN) and Vision Transformer (ViT) models and ensures consistency in experimental conditions to counter the variability in previous research. Key findings reveal significant variability in score effectiveness based on dataset characteristics (e.g., fine-grained versus coarse-grained classes) and model architectures. ViT models generally show superior transferability, especially for fine-grained datasets. While no single score is best in all cases, some scores excel in specific contexts. In addition to predictive accuracy, the study also evaluates computational efficiency and identifies scores that are suitable for resource-constrained scenarios. This research provides insights for selecting appropriate transferability scores to optimize model selection strategies to facilitate efficient deployment in practice.
为图像分类选择预训练模型通常涉及计算量很大的微调。本研究解决了可迁移性分数标准化评估方面的一个研究空白,该评估可以通过对预训练模型进行排名而无需进行详尽的微调来简化模型选择。其动机是通过一种一致的方法来减轻模型选择的计算负担,该方法指导从业者在各项任务中平衡准确性和效率。本研究在11个基准数据集上评估了14种可迁移性分数。它包括卷积神经网络(CNN)和视觉Transformer(ViT)模型,并确保实验条件的一致性以应对先前研究中的变异性。关键发现表明,基于数据集特征(例如,细粒度与粗粒度类别)和模型架构,分数有效性存在显著差异。ViT模型通常表现出更好的可迁移性,尤其是对于细粒度数据集。虽然没有一个分数在所有情况下都是最好的,但有些分数在特定情况下表现出色。除了预测准确性,该研究还评估了计算效率,并确定了适用于资源受限场景的分数。这项研究为选择合适的可迁移性分数以优化模型选择策略提供了见解,以便在实践中促进高效部署。