Nguyen Cuong V, Duong Hieu Minh, Do Cuong D
College of Engineering and Computer Science, VinUniversity, Hanoi, Vietnam.
VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam.
J Healthc Inform Res. 2024 Jun 15;8(3):506-522. doi: 10.1007/s41666-024-00168-3. eCollection 2024 Sep.
In practical electrocardiography (ECG) interpretation, the scarcity of well-annotated data is a common challenge. Transfer learning techniques are valuable in such situations, yet the assessment of transferability has received limited attention. To tackle this issue, we introduce MELEP, which stands for , a measure designed to estimate the effectiveness of knowledge transfer from a pre-trained model to a downstream multi-label ECG diagnosis task. MELEP is generic, working with new target data with different label sets, and computationally efficient, requiring only a single forward pass through the pre-trained model. To the best of our knowledge, MELEP is the first transferability metric specifically designed for multi-label ECG classification problems. Our experiments show that MELEP can predict the performance of pre-trained convolutional and recurrent deep neural networks, on small and imbalanced ECG data. Specifically, we observed strong correlation coefficients (with absolute values exceeding 0.6 in most cases) between MELEP and the actual average F1 scores of the fine-tuned models. Our work highlights the potential of MELEP to expedite the selection of suitable pre-trained models for ECG diagnosis tasks, saving time and effort that would otherwise be spent on fine-tuning these models.
在实际的心电图(ECG)解读中,标注良好的数据稀缺是一个常见的挑战。迁移学习技术在这种情况下很有价值,但对可迁移性的评估却受到了有限的关注。为了解决这个问题,我们引入了MELEP,它代表一种旨在估计从预训练模型到下游多标签心电图诊断任务的知识迁移有效性的度量。MELEP是通用的,适用于具有不同标签集的新目标数据,并且计算效率高,只需要对预训练模型进行一次前向传递。据我们所知,MELEP是第一个专门为多标签心电图分类问题设计的可迁移性度量。我们的实验表明,MELEP可以预测预训练的卷积和循环深度神经网络在小而不平衡的心电图数据上的性能。具体来说,我们观察到MELEP与微调模型的实际平均F1分数之间有很强的相关系数(在大多数情况下绝对值超过0.6)。我们的工作突出了MELEP在加快为心电图诊断任务选择合适的预训练模型方面的潜力,节省了原本会花在微调这些模型上的时间和精力。