Suppr超能文献

用于预训练的通用医学图像数据集的构建与验证

Construction and Validation of a General Medical Image Dataset for Pretraining.

作者信息

Zhang Rongguo, Pei Chenhao, Shi Ji, Wang Shaokang

机构信息

Academy for Multidisciplinary Studies, Capital Normal University, 105 West Third Ring Road North, Haidian District, Beijing, China.

Institute of Advanced Research, Infervision, Beijing, China.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):1051-1061. doi: 10.1007/s10278-024-01226-3. Epub 2024 Aug 15.

Abstract

In the field of deep learning for medical image analysis, training models from scratch are often used and sometimes, transfer learning from pretrained parameters on ImageNet models is also adopted. However, there is no universally accepted medical image dataset specifically designed for pretraining models currently. The purpose of this study is to construct such a general dataset and validate its effectiveness on downstream medical imaging tasks, including classification and segmentation. In this work, we first build a medical image dataset by collecting several public medical image datasets (CPMID). And then, some pretrained models used for transfer learning are obtained based on CPMID. Various-complexity Resnet and the Vision Transformer network are used as the backbone architectures. In the tasks of classification and segmentation on three other datasets, we compared the experimental results of training from scratch, from the pretrained parameters on ImageNet, and from the pretrained parameters on CPMID. Accuracy, the area under the receiver operating characteristic curve, and class activation map are used as metrics for classification performance. Intersection over Union as the metric is for segmentation evaluation. Utilizing the pretrained parameters on the constructed dataset CPMID, we achieved the best classification accuracy, weighted accuracy, and ROC-AUC values on three validation datasets. Notably, the average classification accuracy outperformed ImageNet-based results by 4.30%, 8.86%, and 3.85% respectively. Furthermore, we achieved the optimal balanced outcome of performance and efficiency in both classification and segmentation tasks. The pretrained parameters on the proposed dataset CPMID are very effective for common tasks in medical image analysis such as classification and segmentation.

摘要

在医学图像分析的深度学习领域,通常会从头开始训练模型,有时也会采用基于ImageNet模型的预训练参数进行迁移学习。然而,目前还没有专门为预训练模型设计的被普遍接受的医学图像数据集。本研究的目的是构建这样一个通用数据集,并在包括分类和分割在内的下游医学成像任务上验证其有效性。在这项工作中,我们首先通过收集几个公共医学图像数据集(CPMID)来构建一个医学图像数据集。然后,基于CPMID获得一些用于迁移学习的预训练模型。各种复杂度的Resnet和视觉Transformer网络被用作骨干架构。在其他三个数据集的分类和分割任务中,我们比较了从头开始训练、从ImageNet上的预训练参数训练以及从CPMID上的预训练参数训练的实验结果。准确率、受试者工作特征曲线下面积和类激活图被用作分类性能的指标。交并比作为指标用于分割评估。利用在构建的数据集CPMID上的预训练参数,我们在三个验证数据集上取得了最佳的分类准确率、加权准确率和ROC-AUC值。值得注意的是,平均分类准确率分别比基于ImageNet的结果高出4.30%、8.86%和3.85%。此外,我们在分类和分割任务中都实现了性能和效率的最佳平衡结果。所提出的数据集CPMID上的预训练参数对于医学图像分析中的常见任务如分类和分割非常有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da4b/11950592/fc7a7c0cf718/10278_2024_1226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验