Suppr超能文献

具有不完全检测的高维空间数据联合物种分布模型。

Joint species distribution models with imperfect detection for high-dimensional spatial data.

机构信息

Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.

Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA.

出版信息

Ecology. 2023 Sep;104(9):e4137. doi: 10.1002/ecy.4137. Epub 2023 Jul 19.

Abstract

Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi-species detection-nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi-species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in the spOccupancy software, designed to facilitate application via an accessible, well documented, and open-source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi-species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation in spOccupancy, serves as a user-friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi-species detection-nondetection data.

摘要

确定物种和群落的空间分布是生态学和保护工作的一项关键任务。联合物种分布模型是群落生态学中的一种基本工具,它使用多物种检测-未检测数据来估计物种分布和生物多样性指标。这种数据的分析受到物种之间残余相关性、不完全检测和空间自相关的影响。虽然存在许多方法可以适应这些复杂性中的每一种,但在文献中很少有同时解决和探索这三种复杂性的例子。在这里,我们开发了一种空间因子多物种占有模型,以明确考虑物种相关性、不完全检测和空间自相关。所提出的模型使用空间因子降维方法和最近邻高斯过程,以确保对于具有大量物种(例如,>100)和空间位置(例如,100,000)的数据集具有计算效率。我们将所提出的模型性能与五个替代模型进行了比较,每个模型都解决了三个复杂性中的一个子集。我们在 spOccupancy 软件中实现了所提出的和替代的模型,该软件旨在通过易于访问、有良好文档记录和开源的 R 包来促进应用。通过模拟,我们发现当存在时忽略这三个复杂性会导致模型预测性能较差,并且未能考虑一个或多个复杂性的影响将取决于给定研究的目标。使用美国大陆上 98 种鸟类的案例研究,空间因子多物种占有模型在替代模型中具有最高的预测性能。我们提出的框架及其在 spOccupancy 中的实现,为理解物种分布和生物多样性的空间变化提供了一个用户友好的工具,同时解决了多物种检测-未检测数据中的常见复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验