Chi Shengqiang, Ma Jing, Ding Yiming, Lu Zeyi, Zhou Zhenwei, Wang Mingchao, Li Gonghui, Chen Yuanlei
Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou 311121, China; Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; The Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.
Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou 311121, China.
Life Sci. 2025 Feb 15;363:123396. doi: 10.1016/j.lfs.2025.123396. Epub 2025 Jan 12.
Clear cell renal cell carcinoma (ccRCC) shows considerable variation within and between tumors, presents varying treatment responses among patients, possibly due to molecular distinctions. This study utilized a multi-center and multi-omics analysis to establish and validate a prognosis and treatment vulnerability signature (PTVS) capable of effectively predicting patient prognosis and drug responsiveness.
To address this complexity, we constructed an integrative multi-omics analysis using 10 clustering algorithms on ccRCC patient data. Afterwards, we applied bootstrapping in univariate Cox regression and the Boruta algorithm to pinpoint clinically relevant genes. Based on this, we developed a robust PTVS using seven machine learning algorithms.
Our analysis revealed two distinct ccRCC subtypes with differential prognostic implications, notably identifying subtype 2 with poorer outcomes. Patients in the low PTVS group exhibited superior prognosis statistics and an augmented sensitivity to immunotherapy, features consistent with a 'hot tumor' phenotype. Conversely, individuals within the high PTVS group exhibited diminished prognosis statistic and restricted advantages from immunotherapy. Importantly, the PTVS holds future potential as a notable biomarker for guiding personalized treatment strategies, with four prospective targets (CTSK, XDH, PKMYT1, and EGLN2) indicating therapeutic promise in patients scoring high on PTVS.
The integrative analysis of multi-omics data profoundly enhances the molecular stratification of ccRCC, underscoring far-reaching impact of such comprehensive profiling on its therapeutic strategies.
透明细胞肾细胞癌(ccRCC)在肿瘤内部和肿瘤之间表现出相当大的差异,患者之间的治疗反应各不相同,这可能是由于分子差异所致。本研究采用多中心多组学分析方法,建立并验证了一种能够有效预测患者预后和药物反应性的预后及治疗易感性特征(PTVS)。
为了解决这种复杂性,我们使用10种聚类算法对ccRCC患者数据进行了综合多组学分析。之后,我们在单变量Cox回归中应用自举法和Boruta算法来确定临床相关基因。在此基础上,我们使用7种机器学习算法开发了一种稳健的PTVS。
我们的分析揭示了两种具有不同预后意义的ccRCC亚型,尤其确定了预后较差的2型。低PTVS组患者的预后统计数据较好,对免疫治疗的敏感性增强,这些特征与“热肿瘤”表型一致。相反,高PTVS组患者的预后统计数据较差,免疫治疗的获益有限。重要的是,PTVS有望作为指导个性化治疗策略的重要生物标志物,有四个前瞻性靶点(CTSK、XDH、PKMYT1和EGLN2)表明在PTVS评分高的患者中具有治疗前景。
多组学数据的综合分析极大地增强了ccRCC的分子分层,突显了这种全面分析对其治疗策略的深远影响。