Suppr超能文献

使用功能主成分分析对具有治愈比例的纵向测量和事件发生时间结局进行联合建模。

Joint Modelling of Longitudinal Measurements and Time-to-Event Outcomes With a Cure Fraction Using Functional Principal Component Analysis.

作者信息

Guo Siyuan, Zhang Jiajia, Halabi Susan

机构信息

Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA.

Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA.

出版信息

Stat Med. 2024 Dec 30;43(30):6059-6072. doi: 10.1002/sim.10289. Epub 2024 Dec 5.

Abstract

In studying the association between clinical measurements and time-to-event outcomes within a cure model, utilizing repeated observations rather than solely baseline values may lead to more accurate estimation. However, there are two main challenges in this context. First, longitudinal measurements are usually observed at discrete time points and second, for diseases that respond well to treatment, a high censoring proportion may occur by the end of the trial. In this article, we propose a joint modelling approach to simultaneously study the longitudinal observations and time-to-event outcome with an assumed cure fraction. We employ the functional principal components analysis (FPCA) to model the longitudinal data, offering flexibility by not assuming a specific form for the longitudinal curve. We used a Cox's proportional hazards mixture cure model to study the survival outcome. To investigate the longitudinal binary observations, we adopt a quasi-likelihood method which builds pseudo normal distribution for the binary data and use the E-M algorithm to estimate the parameters. The tuning parameters are selected using the Akaike information criterion. Our proposed method is evaluated through extensive simulation studies and applied to a clinical trial data to study the relationship between the longitudinal prostate specific antigen (PSA) measurements and overall survival in men with metastatic prostate cancer.

摘要

在治愈模型中研究临床测量与事件发生时间结局之间的关联时,利用重复观测值而非仅使用基线值可能会带来更准确的估计。然而,在这种情况下存在两个主要挑战。首先,纵向测量通常是在离散时间点进行观测的,其次,对于对治疗反应良好的疾病,在试验结束时可能会出现较高的删失比例。在本文中,我们提出一种联合建模方法,以在假定有治愈比例的情况下同时研究纵向观测值和事件发生时间结局。我们采用功能主成分分析(FPCA)对纵向数据进行建模,通过不假定纵向曲线的特定形式来提供灵活性。我们使用Cox比例风险混合治愈模型来研究生存结局。为了研究纵向二元观测值,我们采用一种拟似然方法,该方法为二元数据构建伪正态分布,并使用期望最大化(E-M)算法来估计参数。使用赤池信息准则选择调优参数。我们提出的方法通过广泛的模拟研究进行评估,并应用于一项临床试验数据,以研究纵向前列腺特异性抗原(PSA)测量值与转移性前列腺癌男性患者总生存之间的关系。

相似文献

本文引用的文献

2
Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer.转移性激素敏感性前列腺癌的化学激素疗法
N Engl J Med. 2015 Aug 20;373(8):737-46. doi: 10.1056/NEJMoa1503747. Epub 2015 Aug 5.
5
Joint Modeling of Longitudinal and Cure-survival Data.纵向数据与治愈生存数据的联合建模
J Stat Theory Pract. 2013 Apr 1;7(2):324-344. doi: 10.1080/15598608.2013.772036.
6
smcure: an R-package for estimating semiparametric mixture cure models.smcure:用于估计半参数混合治愈模型的 R 包。
Comput Methods Programs Biomed. 2012 Dec;108(3):1255-60. doi: 10.1016/j.cmpb.2012.08.013. Epub 2012 Sep 25.
10
A nonparametric mixture model for cure rate estimation.一种用于治愈率估计的非参数混合模型。
Biometrics. 2000 Mar;56(1):237-43. doi: 10.1111/j.0006-341x.2000.00237.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验