Shi Haolun, Ma Da, Faisal Beg Mirza, Cao Jiguo
Department of Statistics and Actuarial Science, 1763Simon Fraser University, Burnaby, BC, Canada.
School of Engineering, 1763Simon Fraser University, Burnaby, BC, Canada.
Stat Methods Med Res. 2022 Jan;31(1):154-168. doi: 10.1177/09622802211052972. Epub 2021 Nov 22.
Existing survival models involving functional covariates typically rely on the Cox proportional hazards structure and the assumption of right censorship. Motivated by the aim of predicting the time of conversion to Alzheimer's disease from sparse biomarker trajectories in patients with mild cognitive impairment, we propose a functional mixture cure rate model with both functional and scalar covariates for interval censoring and sparsely sampled functional data. To estimate the nonparametric coefficient function that depicts the effect of the shape of the trajectories on the survival outcome and cure probability, we utilize the functional principal component analysis to extract the functional features from the sparsely and irregularly sampled trajectories. To obtain parameter estimates from the mixture cure rate model with interval censoring, we apply the expectation-maximization algorithm based on Poisson data augmentation. The estimation accuracy of our method is assessed via a simulation study and we apply our model on Alzheimer's disease Neuroimaging Initiative data set.
现有的涉及功能协变量的生存模型通常依赖于Cox比例风险结构和右删失假设。受从轻度认知障碍患者稀疏生物标志物轨迹预测转化为阿尔茨海默病时间这一目标的推动,我们提出了一种具有功能和标量协变量的功能混合治愈率模型,用于区间删失和稀疏采样的功能数据。为了估计描述轨迹形状对生存结果和治愈概率影响的非参数系数函数,我们利用功能主成分分析从稀疏且不规则采样的轨迹中提取功能特征。为了从具有区间删失的混合治愈率模型中获得参数估计,我们应用基于泊松数据增强的期望最大化算法。我们通过模拟研究评估了我们方法的估计准确性,并将我们的模型应用于阿尔茨海默病神经影像倡议数据集。