Suppr超能文献

用于及时预测脓毒性休克的连续预警系统的开发。

Development of continuous warning system for timely prediction of septic shock.

作者信息

Kim Gyumin, Lee Sung Woo, Kim Su Jin, Han Kap Su, Lee Sijin, Song Juhyun, Lee Hyo Kyung

机构信息

School of Industrial Management Engineering, Korea University, Seoul, Republic of Korea.

Department of Emergency Medicine, Korea University Anam Hospital, Seoul, Republic of Korea.

出版信息

Front Physiol. 2024 Nov 20;15:1389693. doi: 10.3389/fphys.2024.1389693. eCollection 2024.

Abstract

As delayed treatment of septic shock can lead to an irreversible health state, timely identification of septic shock holds immense value. While numerous approaches have been proposed to build early warning systems, these approaches primarily focus on predicting the future risk of septic shock, irrespective of its precise onset timing. Such early prediction systems without consideration of timeliness fall short in assisting clinicians in taking proactive measures. To address this limitation, we establish a timely warning system for septic shock with data-task engineering, a novel technique regarding the control of data samples and prediction targets. Leveraging machine learning techniques and the real-world electronic medical records from the MIMIC-IV (Medical Information Mart for Intensive Care) database, our system, TEW3S (Timely Early Warning System for Septic Shock), successfully predicted 94% of all shock events with one true alarm for every four false alarms and a maximum lead time of 8 hours. This approach emphasizes the often-overlooked importance of prediction timeliness and may provide a practical avenue to develop a timely warning system for acute deterioration in hospital settings, ultimately improving patient outcomes.

摘要

由于感染性休克的延迟治疗可能导致不可逆转的健康状态,及时识别感染性休克具有巨大价值。虽然已经提出了许多方法来建立早期预警系统,但这些方法主要侧重于预测感染性休克的未来风险,而不考虑其确切的发病时间。这种不考虑及时性的早期预测系统在协助临床医生采取积极措施方面存在不足。为了解决这一局限性,我们利用数据任务工程(一种关于控制数据样本和预测目标的新技术)建立了一个感染性休克及时预警系统。借助机器学习技术和来自MIMIC-IV(重症监护医学信息库)数据库的真实世界电子病历,我们的系统TEW3S(感染性休克及时早期预警系统)成功预测了94%的休克事件,每四个误报中有一个真警报,最长提前时间为8小时。这种方法强调了预测及时性这一常被忽视的重要性,并可能为在医院环境中开发针对急性病情恶化的及时预警系统提供一条实用途径,最终改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4210/11614766/81e76cdaea32/fphys-15-1389693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验