Kato Yuto, Yonemura Kazuma, Seki Kento, Kambara Retsuku, Sanada Atsushi
Research Institute for Physical Measurement, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8563, Japan.
Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan.
Nanophotonics. 2023 May 10;12(13):2527-2535. doi: 10.1515/nanoph-2022-0758. eCollection 2023 Jun.
We propose reconfigurable anomalous reflectors with stretchable elastic substrates. The proposed reflector dynamically controls the reflection direction by mechanically stretching the substrate to induce a physical change of the unit cell period. Owing to the simple and scalable tuning mechanism, the proposed approach is applicable in the millimeter-wave and terahertz bands for a wide reflection steering. To demonstrate the proposed approach, stretchable anomalous reflectors are designed at 140 GHz for normal incident waves. From full-wave simulations, we numerically confirm that highly efficient anomalous reflections with suppressed parasitic reflections in the undesired directions are achieved toward shallower angles as the substrate is stretched. We experimentally demonstrate that the proposed reflectors allow a dynamic control of the reflection direction with wide steering ranges of more than 20°. Moreover, we confirm that the measured efficiencies of the anomalous reflections hardly deteriorate when stretching and maintain practically acceptable performances of over 50 %. The proposed stretchable reflectors have a potential to be used for a reconfigurable intelligent surface (RIS) that realizes dynamic optimizations of the wireless environment in the 6G communication.
我们提出了一种基于可拉伸弹性基板的可重构异常反射器。所提出的反射器通过机械拉伸基板来动态控制反射方向,从而引起单元胞周期的物理变化。由于其简单且可扩展的调谐机制,该方法适用于毫米波和太赫兹频段,以实现宽角度的反射控制。为了验证该方法,我们设计了在140GHz下用于垂直入射波的可拉伸异常反射器。通过全波模拟,我们从数值上证实,随着基板的拉伸,在不期望的方向上具有抑制寄生反射的高效异常反射能够实现向更浅角度的反射。我们通过实验证明,所提出的反射器能够在超过20°的宽转向范围内动态控制反射方向。此外,我们证实,在拉伸时,异常反射的测量效率几乎不会降低,并且保持了超过50%的实际可接受性能。所提出的可拉伸反射器有潜力用于可重构智能表面(RIS),以实现6G通信中无线环境的动态优化。