Suppr超能文献

使用机器学习对极低出生体重早产儿的死亡率和发病率进行早期预测。

Early prediction of mortality and morbidities in VLBW preterm neonates using machine learning.

作者信息

Shu Chi-Hung, Zebda Rema, Espinosa Camilo, Reiss Jonathan, Debuyserie Anne, Reber Kristina, Aghaeepour Nima, Pammi Mohan

机构信息

Department of Anesthesiology, Pain, and Perioperative Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Department of Pediatrics and Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.

出版信息

Pediatr Res. 2024 Oct 8. doi: 10.1038/s41390-024-03604-7.

Abstract

BACKGROUND

Predicting mortality and specific morbidities before they occur may allow for interventions that may improve health trajectories.

HYPOTHESIS

Integrating key maternal and postnatal infant variables in the first 2 weeks of age into machine learning (ML) algorithms will reliably predict survival and specific morbidities in VLBW preterm infants.

METHODS

ML algorithms were developed to integrate 47 features for predicting mortality, bronchopulmonary dysplasia (BPD), neonatal sepsis, necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), cystic periventricular leukomalacia (PVL), and retinopathy of prematurity (ROP). A retrospective cohort (n = 3341) was used to train and validate the models with a repeated 10-fold cross-validation strategy. These models were then tested on a separate cohort (n = 447) to evaluate the final model performance.

RESULTS

Among the seven ML algorithms employed, tree-based ensemble models, specifically Random Forest (RF) and XGBoost, had the best performance metrics. The area under the receiver operating characteristic curve (AUROC) of sepsis with or without meningitis (0.73), NEC (0.73), BPD (0.71), and mortality (0.74) exceeded 0.7, while the area under Precision-Recall curve (AUPRC) for all outcomes was greater than the prevalence, demonstrating effective risk stratification in VLBW preterm infants.

CONCLUSIONS

Our study demonstrates the potential of predictive analytics leveraging ML techniques in advancing precision medicine.

IMPACT

Reliable prediction of adverse outcomes before they occur has the potential to institute interventions and possibly improve health trajectories in VLBW preterm infants. We used machine learning to develop and test predictive models for mortality and five major morbidities in VLBW preterm infants. Individualized prediction of outcomes and individualized interventions will advance Precision Medicine in Neonatology.

摘要

背景

在死亡率和特定疾病发生之前进行预测,可能有助于采取干预措施,从而改善健康轨迹。

假设

将出生后头两周内的关键母亲和产后婴儿变量整合到机器学习(ML)算法中,能够可靠地预测极低出生体重早产儿的生存情况和特定疾病。

方法

开发ML算法,整合47个特征以预测死亡率、支气管肺发育不良(BPD)、新生儿败血症、坏死性小肠结肠炎(NEC)、脑室内出血(IVH)、脑室周围白质软化症(PVL)和早产儿视网膜病变(ROP)。采用回顾性队列研究(n = 3341),通过重复10倍交叉验证策略对模型进行训练和验证。然后在另一个队列(n = 447)上测试这些模型,以评估最终模型的性能。

结果

在所采用的七种ML算法中,基于树的集成模型,特别是随机森林(RF)和XGBoost,具有最佳的性能指标。伴有或不伴有脑膜炎的败血症(0.73)、NEC(0.73)、BPD(0.71)和死亡率(0.74)的受试者工作特征曲线下面积(AUROC)超过0.7,而所有结局的精确召回率曲线下面积(AUPRC)均大于患病率,表明在极低出生体重早产儿中进行了有效的风险分层。

结论

我们的研究证明了利用ML技术进行预测分析在推进精准医学方面的潜力。

影响

在不良结局发生之前进行可靠预测,有可能采取干预措施,并可能改善极低出生体重早产儿的健康轨迹。我们使用机器学习开发并测试了极低出生体重早产儿死亡率和五种主要疾病的预测模型。结局的个体化预测和个体化干预将推动新生儿学的精准医学发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验