Suppr超能文献

基于深度学习设计的、便于制造的超表面双波段光学准直器。

Dual-band optical collimator based on deep-learning designed, fabrication-friendly metasurfaces.

作者信息

Ueno Akira, Lin Hung-I, Yang Fan, An Sensong, Martin-Monier Louis, Shalaginov Mikhail Y, Gu Tian, Hu Juejun

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Innovative Technology Laboratories, AGC Inc., Yokohama, Japan.

出版信息

Nanophotonics. 2023 Jul 28;12(17):3491-3499. doi: 10.1515/nanoph-2023-0329. eCollection 2023 Aug.

Abstract

Metasurfaces, which consist of arrays of ultrathin planar nanostructures (also known as "meta-atoms"), offer immense potential for use in high-performance optical devices through the precise manipulation of electromagnetic waves with subwavelength spatial resolution. However, designing meta-atom structures that simultaneously meet multiple functional requirements (e.g., for multiband or multiangle operation) is an arduous task that poses a significant design burden. Therefore, it is essential to establish a robust method for producing intricate meta-atom structures as functional devices. To address this issue, we developed a rapid construction method for a multifunctional and fabrication-friendly meta-atom library using deep neural networks coupled with a meta-atom selector that accounts for realistic fabrication constraints. To validate the proposed method, we successfully applied the approach to experimentally demonstrate a dual-band metasurface collimator based on complex free-form meta-atoms. Our results qualify the proposed method as an efficient and reliable solution for designing complex meta-atom structures in high-performance optical device implementations.

摘要

超表面由超薄平面纳米结构阵列(也称为“超原子”)组成,通过以亚波长空间分辨率精确操纵电磁波,在高性能光学器件中具有巨大的应用潜力。然而,设计同时满足多种功能要求(例如多频段或多角度操作)的超原子结构是一项艰巨的任务,会带来巨大的设计负担。因此,建立一种稳健的方法来制造复杂的超原子结构作为功能器件至关重要。为了解决这个问题,我们开发了一种快速构建方法,用于使用深度神经网络和考虑实际制造约束的超原子选择器来构建多功能且便于制造的超原子库。为了验证所提出的方法,我们成功地将该方法应用于实验,展示了一种基于复杂自由形式超原子的双频段超表面准直器。我们的结果证明,所提出的方法是在高性能光学器件实现中设计复杂超原子结构的一种高效且可靠的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ade/11501907/5ce38196cd8c/j_nanoph-2023-0329_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验