Du Kang, Barkaoui Hamdi, Zhang Xudong, Jin Limin, Song Qinghai, Xiao Shumin
Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, P. R. China.
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi, P. R. China.
Nanophotonics. 2022 Jan 4;11(9):1761-1781. doi: 10.1515/nanoph-2021-0684. eCollection 2022 Apr.
Optical metasurfaces is a rapidly developing research field driven by its exceptional applications for creating easy-to-integrate ultrathin planar optical devices. The tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost many optical effects and offer novel opportunities for the nanoscale control of light-matter interactions. However, once the structure-only metasurfaces are fabricated, their functions will be fixed, which limits it to make breakthroughs in practical applications. Recently, persistent efforts have led to functional multiplexing. Besides, dynamic light manipulation based on metasurfaces has been demonstrated, providing a footing ground for arbitrary light control in full space-time dimensions. Here, we review the latest research progress in multifunctional and tunable metasurfaces. Firstly, we introduce the evolution of metasurfaces and then present the concepts, the basic principles, and the design methods of multifunctional metasurface. Then with more details, we discuss how to realize metasurfaces with both multifunctionality and tunability. Finally, we also foresee various future research directions and applications of metasurfaces including innovative design methods, new material platforms, and tunable metasurfaces based metadevices.
光学超表面是一个快速发展的研究领域,其驱动力在于它在制造易于集成的超薄平面光学器件方面的卓越应用。共振光子纳米结构中局部电磁场的紧密限制可以增强许多光学效应,并为光与物质相互作用的纳米级控制提供新的机会。然而,一旦仅由结构组成的超表面被制造出来,它们的功能就会固定,这限制了其在实际应用中取得突破。最近,持续的努力带来了功能复用。此外,基于超表面的动态光操纵已得到证实,为全时空维度的任意光控制提供了基础。在此,我们综述多功能和可调谐超表面的最新研究进展。首先,我们介绍超表面的发展历程,然后阐述多功能超表面的概念、基本原理和设计方法。接着,我们更详细地讨论如何实现兼具多功能性和可调谐性的超表面。最后,我们还展望了超表面未来的各种研究方向和应用,包括创新设计方法、新材料平台以及基于可调谐超表面的元器件。