Suppr超能文献

一种在智能医疗中通过量子计算进行医学高阶关联挖掘以处理大规模健康数据的框架。

A framework for processing large-scale health data in medical higher-order correlation mining by quantum computing in smart healthcare.

作者信息

Mei Peng, Zhang Fuquan

机构信息

Digital Governance Office, National Governance Teaching and Research Department, Party School of the Central Committee of C.P.C, Beijing, China.

Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou, China.

出版信息

Front Digit Health. 2024 Nov 20;6:1502745. doi: 10.3389/fdgth.2024.1502745. eCollection 2024.

Abstract

This study aims to leverage the advanced capabilities of quantum computing to construct an efficient framework for processing large-scale health data, uncover potential higher-order correlations in medicine, and enhance the accuracy of smart healthcare diagnosis and treatment. A data processing framework is developed using quantum annealing algorithms and quantum circuits. We call it the quantum medical data simulation computational model (Q-MDSC). A unique encoding method based on quantum bits is employed for health data features, such as encoding symptom information from electronic health records into different quantum bits and representing different alleles of genetic data through superposition states of quantum bits. The properties of quantum entanglement are utilized to relate different data types, and quantum parallelism is harnessed to process multiple data combinations simultaneously. Additionally, this quantum computing framework is compared with traditional data mining methods using the same datasets, which include the Cochrane Systematic Review Database (https://www.cochranelibrary.com), the BioASQ Dataset (https://participants-area.bioasq.org), the PubMed Central Dataset (https://www.ncbi.nlm.nih.gov/pmc), and the Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov). The datasets are divided into training and testing sets in a 7:3 ratio during the experiments. Tests are conducted on association mining tasks of varying data scales and complexities, ranging from simple symptom-disease associations to complex gene-symptom-disease higher-order associations. The results indicate that, when processing large-scale data, the quantum computing framework improves overall computational speed by approximately 45% compared to traditional algorithms. Regarding uncovering higher-order correlations, the quantum computing framework enhances accuracy by about 30% relative to traditional algorithms. For early disease prediction, the accuracy achieved with the new framework is approximately 25% higher than that of conventional methods. Furthermore, for personalized treatment plan matching, the matching accuracy of the quantum computing framework surpasses traditional approaches by about 35%. These findings demonstrate the significant potential of the quantum computing-based smart healthcare framework for processing large-scale health data in the context of higher-order correlation mining, paving new pathways for the development of smart healthcare. This study utilizes multiple public datasets to achieve breakthroughs in computational speed, higher-order correlation mining, early disease prediction, and personalized treatment plan matching, thus opening new avenues for advancing smart healthcare.

摘要

本研究旨在利用量子计算的先进能力构建一个高效框架,用于处理大规模健康数据,揭示医学中潜在的高阶相关性,并提高智能医疗诊断和治疗的准确性。使用量子退火算法和量子电路开发了一个数据处理框架。我们将其称为量子医学数据模拟计算模型(Q-MDSC)。一种基于量子比特的独特编码方法用于健康数据特征,例如将电子健康记录中的症状信息编码到不同的量子比特中,并通过量子比特的叠加态表示遗传数据的不同等位基因。利用量子纠缠的特性关联不同的数据类型,并利用量子并行性同时处理多个数据组合。此外,使用相同的数据集将这个量子计算框架与传统数据挖掘方法进行比较,这些数据集包括考克兰系统评价数据库(https://www.cochranelibrary.com)、生物ASQ数据集(https://participants-area.bioasq.org)、PubMed Central数据集(https://www.ncbi.nlm.nih.gov/pmc)和癌症基因组图谱(TCGA)(https://portal.gdc.cancer.gov)。在实验过程中,数据集按照7:3的比例分为训练集和测试集。对不同数据规模和复杂度的关联挖掘任务进行测试,范围从简单的症状-疾病关联到复杂的基因-症状-疾病高阶关联。结果表明,在处理大规模数据时,与传统算法相比,量子计算框架将整体计算速度提高了约45%。在揭示高阶相关性方面,量子计算框架相对于传统算法将准确性提高了约30%。对于早期疾病预测,新框架实现的准确性比传统方法高出约25%。此外,对于个性化治疗方案匹配,量子计算框架的匹配准确性比传统方法高出约35%。这些发现证明了基于量子计算的智能医疗框架在高阶相关性挖掘背景下处理大规模健康数据的巨大潜力,为智能医疗的发展开辟了新途径。本研究利用多个公共数据集在计算速度、高阶相关性挖掘、早期疾病预测和个性化治疗方案匹配方面取得突破,从而为推进智能医疗开辟了新途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验