Iwanaga Masanobu, Yang Xu, Karanikolas Vasilios, Kuroda Takashi, Sakuma Yoshiki
National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
Nanophotonics. 2023 Dec 25;13(1):95-105. doi: 10.1515/nanoph-2023-0672. eCollection 2024 Jan.
2D materials such as transition metal dichalcogenides (TMDCs) are a new class of atomic-layer materials possessing optical and electric properties that significantly depend on the number of layers. Electronic transitions can be manipulated in artificial resonant electromagnetic (EM) fields using metasurfaces and other designed nanostructures. Here, we demonstrate prominently resonant enhancement in the photoluminescence (PL) of atomic monolayer, WS, doped with a small quantity of Mo. The excitonic PL showed a strong enhancement effect on a higher-order magnetic resonance of all-dielectric metasurfaces consisting of periodic arrays of Si nanopellets. The PL intensity witnessed a 300-fold enhancement compared to the reference PL intensity on a flat silicon dioxide (SiO) layer, which suggests a drastic change in the dynamics of photoexcited states. Confocal PL microscopy and the analysis revealed that the single photons were coherently emitted from the TMDC monolayer on the metasurface. Furthermore, examining the PL lifetime in the ps and ns timescales clarified two exponential components at the prominent exciton PL: a short-time component decaying in 22 ps and a long-time component lasting over 10 ns. Therefore, we can infer that the radiative components were significantly activated in the TMDC monolayer on the metasurfaces in comparison to the reference monolayer on a flat SiO layer.
诸如过渡金属二硫属化物(TMDCs)之类的二维材料是一类新型的原子层材料,其光学和电学性质显著取决于层数。利用超表面和其他设计的纳米结构,可以在人工共振电磁(EM)场中操纵电子跃迁。在此,我们显著展示了在少量Mo掺杂的原子单层WS的光致发光(PL)中出现的共振增强。激子PL对由Si纳米颗粒的周期性阵列组成的全介质超表面的高阶磁共振表现出强烈的增强效应。与平坦二氧化硅(SiO)层上的参考PL强度相比,PL强度增强了300倍,这表明光激发态的动力学发生了急剧变化。共聚焦PL显微镜及分析表明,单光子是从超表面上的TMDC单层相干发射的。此外,在皮秒和纳秒时间尺度上检查PL寿命,在显著的激子PL处明确了两个指数成分:一个在22皮秒内衰减的短时间成分和一个持续超过10纳秒的长时间成分。因此,我们可以推断,与平坦SiO层上的参考单层相比,超表面上的TMDC单层中的辐射成分被显著激活。