Suppr超能文献

基于条件生成对抗网络的数据驱动并发纳米结构优化

Data-driven concurrent nanostructure optimization based on conditional generative adversarial networks.

作者信息

Baucour Arthur, Kim Myungjoon, Shin Jonghwa

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea.

出版信息

Nanophotonics. 2022 May 9;11(12):2865-2873. doi: 10.1515/nanoph-2022-0005. eCollection 2022 Jun.

Abstract

Iterative numerical optimization is a ubiquitous tool to design optical nanostructures. However, there can be a significant performance gap between the numerically simulated results, with pristine shapes, and the experimentally measured values, with deformed profiles. We introduce conditional generative adversarial networks (CGAN) into the standard iterative optimization loop to learn process-structure relationships and produce realistic simulation designs based on the fabrication conditions. This ensures that the process-structure mapping is accurate for the specific available equipment and moves the optimization space from the structural parameters (e.g. width, height, and period) to process parameters (e.g. deposition rate and annealing time). We demonstrate this model agnostic optimization platform on the design of a red, green, and blue color filter based on metallic gratings. The generative network can learn complex M-to-N nonlinear process-structure relations, thereby generating simulation profiles similar to the training data over a wide range of fabrication conditions. The CGAN-based optimization resulted in fabrication parameters leading to a realistic design with a higher figure of merit than a standard optimization using pristine structures. This data-driven approach can expedite the design process both by limiting the design search space to a fabrication-accurate subspace and by returning the optimal process parameters automatically upon obtaining the optimal structure design.

摘要

迭代数值优化是设计光学纳米结构的一种常用工具。然而,具有原始形状的数值模拟结果与具有变形轮廓的实验测量值之间可能存在显著的性能差距。我们将条件生成对抗网络(CGAN)引入标准迭代优化循环,以学习工艺 - 结构关系,并根据制造条件生成逼真的模拟设计。这确保了工艺 - 结构映射对于特定的可用设备是准确的,并将优化空间从结构参数(例如宽度、高度和周期)转移到工艺参数(例如沉积速率和退火时间)。我们在基于金属光栅的红、绿、蓝滤光片设计上展示了这个与模型无关的优化平台。生成网络可以学习复杂的M到N非线性工艺 - 结构关系,从而在广泛的制造条件下生成与训练数据相似的模拟轮廓。基于CGAN的优化产生了制造参数,从而得到了一个比使用原始结构的标准优化具有更高品质因数的逼真设计。这种数据驱动的方法可以通过将设计搜索空间限制在制造精确的子空间,并在获得最优结构设计时自动返回最优工艺参数,从而加快设计过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验