Suppr超能文献

使用图像到图像条件生成对抗网络的动态对比增强磁共振成像血管通透性映射用于评估乳腺癌新辅助化疗反应

Dynamic Contrast Enhanced MRI Mapping of Vascular Permeability for Evaluation of Breast Cancer Neoadjuvant Chemotherapy Response Using Image-to-Image Conditional Generative Adversarial Networks.

作者信息

Arledge Chad A, Zhao Alan H, Topaloglu Umit, Zhao Dawen

机构信息

Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.

University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.

出版信息

medRxiv. 2024 Sep 5:2024.09.04.24313070. doi: 10.1101/2024.09.04.24313070.

Abstract

Dynamic contrast enhanced (DCE) MRI is a non-invasive imaging technique that has become a quantitative standard for assessing tumor microvascular permeability. Through the application of a pharmacokinetic (PK) model to a series of T1-weighed MR images acquired after an injection of a contrast agent, several vascular permeability parameters can be quantitatively estimated. These parameters, including K, a measure of capillary permeability, have been widely implemented for assessing tumor vascular function as well as tumor therapeutic response. However, conventional PK modeling for translation of DCE MRI to PK vascular permeability parameter maps is complex and time-consuming for dynamic scans with thousands of pixels per image. In recent years, image-to-image conditional generative adversarial network (cGAN) is emerging as a robust approach in computer vision for complex cross-domain translation tasks. Through a sophisticated adversarial training process between two neural networks, image-to-image cGANs learn to effectively translate images from one domain to another, producing images that are indistinguishable from those in the target domain. In the present study, we have developed a novel image-to-image cGAN approach for mapping DCE MRI data to PK vascular permeability parameter maps. The DCE-to-PK cGAN not only generates high-quality parameter maps that closely resemble the ground truth, but also significantly reduces computation time over 1000-fold. The utility of the cGAN approach to map vascular permeability is validated using open-source breast cancer patient DCE MRI data provided by The Cancer Imaging Archive (TCIA). This data collection includes images and pathological analyses of breast cancer patients acquired before and after the first cycle of neoadjuvant chemotherapy (NACT). Importantly, in good agreement with previous studies leveraging this dataset, the percentage change of vascular permeability K derived from the DCE-to-PK cGAN enables early prediction of responders to NACT.

摘要

动态对比增强(DCE)磁共振成像(MRI)是一种非侵入性成像技术,已成为评估肿瘤微血管通透性的定量标准。通过将药代动力学(PK)模型应用于注射造影剂后采集的一系列T1加权MR图像,可以定量估计几个血管通透性参数。这些参数,包括衡量毛细血管通透性的K值,已被广泛用于评估肿瘤血管功能以及肿瘤治疗反应。然而,将DCE MRI转换为PK血管通透性参数图的传统PK建模对于每张图像有数千像素的动态扫描来说既复杂又耗时。近年来,图像到图像条件生成对抗网络(cGAN)作为计算机视觉中用于复杂跨域翻译任务的一种强大方法正在兴起。通过两个神经网络之间复杂的对抗训练过程,图像到图像cGAN学会有效地将图像从一个域转换到另一个域,生成与目标域中的图像难以区分的图像。在本研究中,我们开发了一种新颖的图像到图像cGAN方法,用于将DCE MRI数据映射到PK血管通透性参数图。DCE到PK cGAN不仅生成与真实情况非常相似的高质量参数图,而且计算时间显著减少了1000倍以上。使用癌症成像存档(TCIA)提供的开源乳腺癌患者DCE MRI数据验证了cGAN方法映射血管通透性的效用。该数据收集包括新辅助化疗(NACT)第一个周期前后获得的乳腺癌患者的图像和病理分析。重要的是,与先前利用该数据集的研究结果高度一致,从DCE到PK cGAN得出的血管通透性K值的百分比变化能够早期预测NACT的反应者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验