Suppr超能文献

纳米线二聚体光学天线照亮了硅的表面缺陷。

Nanowire dimer optical antenna brightens the surface defects of silicon.

作者信息

Li Ze, You Qingzhang, Wang Hui, Zhang Lisheng, Zhang Duan, Jia Shangtong, Fang Yan, Wang Peijie

机构信息

The Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China.

Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China.

出版信息

Nanophotonics. 2023 Mar 15;12(9):1723-1731. doi: 10.1515/nanoph-2022-0742. eCollection 2023 Apr.

Abstract

Plasmonic hot spots located between metallic dimer nanostructures have been utilized comprehensively to achieve efficient light emission. However, different from the enhancement occurred in the plasmonic hot spot, the investigation of light emission the hot spot on submicron scale remains challenge. In this work, we have constructed a plasmonic nanowire dimer (NWD) system to brighten the light emission of the surface defects of silicon off the hot spot on the submicron scale. The NWD can trap light through plasmonic gap, then, the excited emitter on the submicron scale can radiate light efficiently by coupling with the dipole gap plasmonic mode. Furthermore, the coupling of dipole plasmonic mode with the emitters can be tuned by changing the gap size, and then photoluminescence emission was drastically enhanced up to 126 folds. Theoretical simulations reveal the photoluminescence enhancement arises from the combination of the NWD's high radiation efficiency, Purcell enhancement, efficient redirection of the emitted photoluminescence and the excitation enhancement. In this study, the photoluminescence signal can be effectively enhanced by placing nano-antenna patch on the detected low-quantum-efficiency emitters, which may open up a pathway toward controlling plasmonic gap mode enhanced light emission off the hot spot on submicron scale.

摘要

位于金属二聚体纳米结构之间的等离激元热点已被广泛用于实现高效发光。然而,与等离激元热点中发生的增强不同,在亚微米尺度上对热点处发光的研究仍然具有挑战性。在这项工作中,我们构建了一个等离激元纳米线二聚体(NWD)系统,以增强亚微米尺度上远离热点的硅表面缺陷的发光。NWD可以通过等离激元间隙捕获光,然后,亚微米尺度上被激发的发射体可以通过与偶极间隙等离激元模式耦合而有效地辐射光。此外,偶极等离激元模式与发射体之间的耦合可以通过改变间隙大小来调节,进而光致发光发射显著增强,提高了126倍。理论模拟表明,光致发光增强源于NWD的高辐射效率、珀塞尔增强、发射的光致发光的有效重定向和激发增强的综合作用。在本研究中,通过在检测到的低量子效率发射体上放置纳米天线贴片,可以有效地增强光致发光信号,这可能为控制亚微米尺度上远离热点的等离激元间隙模式增强发光开辟一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caff/11501950/7e0381375429/j_nanoph-2022-0742_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验